Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 597 Accesses

Abstract

From the four types of interactions present in our world, only electromagnetism and gravity are long-range interactions. The weak and the strong interactions are so short-ranged that they cannot be responsible for the large-scale behaviour of our universe. However, despite its long range character, electromagnetism cannot be the dominant force in an electrically neutral universe. The only long range interaction that remains is gravity, whose source is energy density. Thus, a theory of the cosmos must be based on a theory of gravity. The best gravitational theory we have so far is Einstein’s theory of General Relativity [9, 10]. In contrast to the Standard Model, which is a quantum field theory, General Relativity is a classical field theory. Aside from this, the distinctive feature of gravity compared to the other fundamental interactions is that it is not a theory defined on space-time, but a theory of space-time itself. The physical foundation of General Relativity is the equivalence principle, which states that gravity uniformly couples to all kind of energy density. Mathematically, space-time is described by a pseudo-Riemannian manifold \(\mathcal{M}\) and the gravitational field by the metric field \(g_{\mu \nu }(x)\) on \(\mathcal{M}\). The gravitational interaction manifests itself geometrically as curvature of space-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the sign convention: signature \((-1,1,1,1),+\!R^{\alpha }_{\;\;\beta \gamma \delta }=\Gamma ^{\alpha }_{\;\;\beta \delta ,\gamma }-\ldots \) and \(R^{\sigma }_{\;\;\mu \sigma \nu }= +\!R_{\mu \nu }\).

  2. 2.

    A globally hyperbolic manifold is equivalent to the existence of a Cauchy surface, i.e. given some initial data on a 3-hypersurface \(\Sigma _{t}\), the evolution is uniquely determined by the equations of motion. There are also theoretical attempts to investigate whether our universe has a different topology, e.g. a torus, on the basis of experimental data, see e.g. [3, 6, 7, 18].

  3. 3.

    If \(V(\varphi )\) was the Higgs potential of the Standard Model, the inflaton would settle in the electroweak vacuum, generating the mass of gauge bosons and fermions.

  4. 4.

    The density and pressure fluctuations contained in \(\delta T_{\mu \nu }\) are scalar perturbations.

References

  1. Albrecht, A., Steinhardt, P.J.: Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  2. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265. Wiley, New York (1962)

    Google Scholar 

  3. Aurich, R., Lustig, S., Steiner, F.: CMB anisotropy of the Poincaré dodecahedron. Class Quantum Gravity 22, 2061 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Baumann, D.: TASI lectures on inflation. http://arxiv.org/abs/0907.5424 (2009) [160 pages] (cited on 19 Dec 2011)

  5. Bunch, T., Davies, P.: Quantum field theory in de Sitter space: renormalization by point splitting. Proc. Roy. Soc. Lond. A 360, 117 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  6. Copi, C.J., Huterer, D., Schwarz, D.J., Starkman, G.D.: Large-angle anomalies in the CMB. Adv. Astron. 2010, 847541 (2010)

    Article  ADS  Google Scholar 

  7. Cornish, N.J., Spergel, D.N., Starkman, G.D., Komatsu, E.: Constraining the topology of the Universe. Phys. Rev. Lett. 92, 201302 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  8. Davies, P.C.W.: Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A 8, 609 (1975)

    Article  ADS  Google Scholar 

  9. Einstein, A.: Die Feldgleichungen der Gravitation. Sitzber. kgl.-preuĂź. Akad. Wiss. Berlin, Sitzung der phys.-math. Klasse, XLVIII, 844 (1915)

    Google Scholar 

  10. Einstein, A.: Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. (Berlin), 4th series, 49, 769 (1916)

    Google Scholar 

  11. Fulling, S.A.: Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7, 2850 (1973)

    Article  ADS  Google Scholar 

  12. Guth, A.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  13. Guth, A.H., Pi, S.Y.: Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110 (1982)

    Article  ADS  Google Scholar 

  14. Hawking, S.W.: The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982)

    Article  ADS  Google Scholar 

  15. Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A.: Origin of classical structure in the universe. J. Phys. Conf. Ser. 67, 012023 (2007)

    Article  ADS  Google Scholar 

  16. Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A.: Pointer states for primordial fluctuations in inflationary cosmology. Class Quantum Gravity 24, 1699 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Kiefer, C., Polarski, D., Starobinsky, A.A.: Quantum-to-classical transition for fluctuations in the early universe. Int. J. Mod. Phys. D 7, 455 (1998)

    Article  ADS  MATH  Google Scholar 

  18. Lachièze-Rey, M., Luminet, J.-P.: Cosmic topology. Phys. Rep. 254, 135 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  19. Linde, A.D.: A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  20. Maldacena, J.M.: Non-gaussian features of primordial fluctuations in single field inflationary models. J. High Energy Phys. 05, 013 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  21. Mukhanov, V.F., Chibisov, G.V.: Quantum fluctuation and a nonsingular universe. JETP Lett. 33, 532 (1981). (In Russian)

    ADS  Google Scholar 

  22. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Phys. Rep. 215, 203 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  23. Parker, L.: Particle creation in expanding universes. Phys. Rev. Lett. 21, 562 (1968)

    Article  ADS  Google Scholar 

  24. Parker, L.: Quantized fields and particle creation in expanding universes. I. Phys. Rev. 183, 1057 (1969)

    Article  ADS  MATH  Google Scholar 

  25. Perlmutter, S., et al. (Supernova Cosmology Project): Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Google Scholar 

  26. Peter, P., Uzan, J.-P.: Primordial Cosmology. Oxford University Press, New York (2009)

    Google Scholar 

  27. Starobinsky, A.A.: Spectrum of relict gravitational radiation and early state of the universe. JETP Lett. 30, 682 (1979)

    ADS  Google Scholar 

  28. Starobinsky, A.A.: Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175 (1982)

    Article  ADS  Google Scholar 

  29. Straumann, N.: From primordial quantum fluctuations to the anisotropies of the cosmic microwave background radiation. Ann. Phys. (Leipzig) 15, 701 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Unruh, W.G.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  31. Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Friedrich Steinwachs .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Steinwachs, C.F. (2014). Cosmology. In: Non-minimal Higgs Inflation and Frame Dependence in Cosmology. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01842-3_2

Download citation

Publish with us

Policies and ethics