We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

On the Alexandrov Topology of sub-Lorentzian Manifolds | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

On the Alexandrov Topology of sub-Lorentzian Manifolds

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Geometric Control Theory and Sub-Riemannian Geometry

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present work, we show that in contrast to sub-Riemannian geometry, in sub-Lorentzian geometry the manifold topology, the topology generated by an analogue of the Riemannian distance function and the Alexandrov topology based on causal relations, are not equivalent in general and may possess a variety of relations. We also show that ‘opened causal relations’ are more well-behaved in sub-Lorentzian settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 Note that we cannot define the eigenvalues of a quadratic form, but their sign due to Sylvester’s Theorem of Inertia. We call the number of negative eigenvalues the index of the form.

References

  1. Agrachev A., Barilary D., Boscain U.: Introduction to Riemannian and sub-Riemannian geometry. Manuscript in preparation, available on the web-site: http://www.cmapx.polytechnique.fr/barilari/Notes.php

  2. Agrachev A.A., Sachkov Y.L.: Control theory from the geometric viewpoint. Encyclopaedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-Verlag, Berlin Heidelberg New York, pp. 412 (2004)

    Google Scholar 

  3. Beem J.K., Ehrlich P.E., Easley K.L.: Global Lorentzian geometry, Pure and applied mathematics 202, New York, Dekker (1996)

    Google Scholar 

  4. Capogna L., Danielli D., Pauls S.D., Tyson J.T.: An introduction to the Heisenberg group and the sub-Riemannianisoperimetricproblem. Progressin Mathematics 259. Birkhäuser Verlag, Basel, pp. 223 (2007)

    Google Scholar 

  5. Chang D.C., Markina I., Vasil'ev A.: Sub-Lorentziangeometryon anti-deSitter space, J. Math. Pures Appl. (9) 90(1), 82–110 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chow W.L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117, 98–105 (1939)

    MathSciNet  Google Scholar 

  7. Grochowski M.: Reachable sets for the Heisenberg sub-Lorentzian structure on R3. An estimate for the distance function. J. Dyn. Control Syst. 12(2), 145–160 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grochowski M.: Properties of reachable sets in the sub-Lorentzian geometry. J. Geom. Phys. 59(7), 885–900 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grochowski M.: Some properties of reachable sets for control affine systems. Anal. Math. Phys. 1(1), 3–13 (2011)

    Article  MathSciNet  Google Scholar 

  10. Grong E., Vasil'ev A.: Sub-Riemannian and sub-Lorentziangeometry on SU(1, 1) and on its universal cover. J. Geom. Mech. 3(2), 225–260 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hawking S.W., Ellis G.F.R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics, No. 1. Cambridge University Press, London-New York, pp. 391 (1973)

    Book  Google Scholar 

  12. Korolko A., Markina I.: NonholonomicLorentziangeometry on some H-type groups. J. Geom. Anal. 19(4), 864–889 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Korolko A., Markina I.: Geodesics on H-type quaternion groups with sub-Lorentzian metric and their physical interpretation. Complex Anal. Oper. Theory 4(3), 589–618 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Korolko A., Markina I.: Semi-Riemannian geometry with nonholonomic constraints. Taiwanese J. Math. 15(4), 1581–1616 (2011)

    MATH  MathSciNet  Google Scholar 

  15. Liu W., Sussmann H.J.: Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Amer. Math. Soc. 118 104 (1995)

    MathSciNet  Google Scholar 

  16. Montgomery R.: A tour of subriemanniangeometries, their geodesicsand applications. Mathe-matical Surveysand Monographs, 91. American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  17. Montgomery R.: Abnormal Minimizers. SIAM Journalon Controland Optimization 32, 1605–1620 (1994)

    Article  MATH  Google Scholar 

  18. O'Neill B.: Semi-Riemannian geometry. With applications to relativity. Pure and Applied Mathematics, 103. Academic Press, Inc. (1983)

    Google Scholar 

  19. Penrose R.: Techniquesof differentialtopology in relativity. Philadelphia, Pa., Soc. for Industrial and Applied Math., Regional conference series in applied mathematics, no. 7 (1972)

    Google Scholar 

  20. Rashevski P.K.: About connectingtwo points of complete nonholonomic space by admissible curve, Uch. Zapiski Ped. Inst. K. Liebknecht 2, 83–94 (1938)

    Google Scholar 

  21. Strichartz R.S.: Sub-Riemannian geometry. J. Differential Geom. 24(2), 221–263 (1986)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Markina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Markina, I., Wojtowytsch, S. (2014). On the Alexandrov Topology of sub-Lorentzian Manifolds. In: Stefani, G., Boscain, U., Gauthier, JP., Sarychev, A., Sigalotti, M. (eds) Geometric Control Theory and Sub-Riemannian Geometry. Springer INdAM Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-02132-4_17

Download citation

Publish with us

Policies and ethics