Skip to main content

A Macroscopic Model for Bidirectional Pedestrian Flow

  • Conference paper
  • First Online:
Pedestrian and Evacuation Dynamics 2012

Abstract

We present a macroscopic model for pedestrian dynamics in a corridor (or in any quasi one-dimensional system). The model is inspired from the Aw-Rascle model of car traffic but here, a two-directional flow is considered: in each point, two densities are defined, for left and right going pedestrians. The challenge is to bound the density even under congestion. This is enforced by a pressure term, modeling the interactions between pedestrians, that diverges when the density approaches the maximal density. The intensity of the divergence is controlled by a small parameter epsilon. In the limit where epsilon tends to zero, the system exhibits coexisting congested and uncongested phases separated by sharp interfaces.

The lateral extension of the corridor can be taken into account through a multi-lane model, with appropriate lane changes. A characteristic of two-way models is that they can loose their hyperbolicity in some cases. Actually, this could be the counterpart of phenomena observed in real crowds, namely the instability of homogeneous flows towards lane-formation, or even crowd turbulence as observed at very high crowd densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Al-nasur & P. Kachroo: A Microscopic-to-Macroscopic Crowd Dynamic model. Proceedings of the IEEE ITSC 2006, 2006 IEEE Intelligent Transportation Systems Conference Toronto, Canada, September 17–20 (2006).

    Google Scholar 

  2. C. Appert-Rolland, P. Degond, and S. Motsch: Two-way multi-lane traffic model for pedestrians in corridors. Networks and Heterogeneous Media 6 (2011) 351–381.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Aw, M. Rascle: Resurrection of second order models of traffic flow. SIAM J. Appl. Math., 60 (2000), 916–938.

    Article  MATH  MathSciNet  Google Scholar 

  4. N. Bellomo, C. Dogbe: On the modelling crowd dynamics: from scaling to second order hyperbolic macroscopic models. Math. Models Methods Appl. Sci., 18 (2008), 1317–1345.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Berthelin, P. Degond, M. Delitala, M. Rascle: A model for the formation and evolution of traffic jams. Arch. Rat. Mech. Anal., 187 (2008), 185–220.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Berthelin, P. Degond, V. Le Blanc, S. Moutari, J. Royer, M. Rascle: A Traffic-Flow Model with Constraints for the Modeling of Traffic Jams. Math. Models Methods Appl. Sci., 18, Suppl. (2008), 1269–1298.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Bouchut, Y. Brenier, J. Cortes, J. F. Ripoll: A hierachy of models for two-phase flows. J. Nonlinear Sci., 10 (2000), 639–660.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Chalons: Numerical approximation of a macroscopic model of pedestrian flows. SIAM J. Sci. Comput., 29 (2007), 539–555.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. M. Colombo, M. D. Rosini: Pedestrian flows and nonclassical shocks. Math. Methods Appl. Sci., 28 (2005), 1553–1567.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Daganzo: Requiem for second order fluid approximations of traffic flow. Transp. Res. B, 29 (1995), 277–286.

    Article  Google Scholar 

  11. P. Degond, M. Delitala: Modelling and simulation of vehicular traffic jam formation. Kinet. Relat. Models, 1 (2008), 279–293.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Degond, J. Hua, L. Navoret: Numerical simulations of the Euler system with congestion constraint. J. of Computational Physics, 230 (2011), 8057–8088.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Degond, M. Tang: All speed scheme for the low Mach number limit of the Isentropic Euler equations. Commun. Comput. Phys., 10 (2011), 1–31.

    MathSciNet  Google Scholar 

  14. D. Helbing: A fluid dynamic model for the movement of pedestrians. Complex Systems, 6 (1992), 391–415.

    MATH  MathSciNet  Google Scholar 

  15. D. Helbing, A. Johansson, and H.Z. Al-Abideen: The dynamics of crowd disasters: An empirical study. Phys. Rev. E 75, 046109 (2007).

    Article  Google Scholar 

  16. L. F. Henderson: On the fluid mechanics of human crowd motion. Transportation Research, 8 (1974), 509–515.

    Article  Google Scholar 

  17. S. Hoogendoorn, P. H. L. Bovy: Simulation of pedestrian flows by optimal control and differential games. Optimal Control Appl. Methods, 24 (2003), 153–172.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. L. Hughes: A continuum theory for the flow of pedestrians. Transportation Research B, 36 (2002), 507–535.

    Article  Google Scholar 

  19. R. L. Hughes: The flow of human crowds. Ann. Rev. Fluid Mech., 35 (2003), 169–182.

    Article  Google Scholar 

  20. M. J. Lighthill, J. B. Whitham: On kinematic waves. I: flow movement in long rivers. II: A theory of traffic flow on long crowded roads. Proc. Roy. Soc., A229 (1955), 281–345.

    MathSciNet  Google Scholar 

  21. B. Maury, A. Roudneff-Chupin, F. Santambrogio: A macroscopic crowd motion model of gradient flow type. Math. Models Methods Appl. Sci., 20 (2010), 1787–1821.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Maury, J. Venel: A mathematical framework for a crowd motion model. C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 1245–1250.

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Moussaïd, E. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond, and G. Theraulaz: Traffic Instabilities in Self-organized Pedestrian Crowds. PLoS Computional Biology, 8 (2012) 1002442.

    Article  Google Scholar 

  24. B. Piccoli, A. Tosin: Pedestrian flows in bounded domains with obstacles. Contin. Mech. Thermodyn., 21 (2009), 85–107.

    Article  MATH  MathSciNet  Google Scholar 

  25. B. Piccoli, A. Tosin: Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal., 199 (2010), 707–738.

    Article  MathSciNet  Google Scholar 

  26. V. Shvetsov, D. Helbing: Macroscopic dynamics of multi-lane traffic. Phys. Rev. E 59 (1999), 6328–6339.

    Article  Google Scholar 

  27. W. G. Weng, S. F. Shena, H. Y. Yuana, W. C. Fana: A behavior-based model for pedestrian counter flow. Physica A 375 (2007), 668–678.

    Article  Google Scholar 

  28. More information can be found at http://www.pedigree-project.info.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Appert-Rolland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Appert-Rolland, C., Degond, P., Motsch, S. (2014). A Macroscopic Model for Bidirectional Pedestrian Flow. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds) Pedestrian and Evacuation Dynamics 2012. Springer, Cham. https://doi.org/10.1007/978-3-319-02447-9_48

Download citation

Publish with us

Policies and ethics