Skip to main content

Groupwise Registration for Correcting Subject Motion and Eddy Current Distortions in Diffusion MRI Using a PCA Based Dissimilarity Metric

  • Conference paper
  • First Online:
Computational Diffusion MRI and Brain Connectivity

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Before starting a diffusion-weighted MRI analysis, it is important to correct any misalignment between the diffusion-weighted images (DWIs) that was caused by subject motion and eddy current induced geometric distortions. Conventional methods adopt a pairwise registration approach, in which the non-DWI, a.k.a. the b = 0 image, is used as a reference. In this work, a groupwise affine registration framework, using a global dissimilarity metric, is proposed, which eliminates the need for selecting a reference image and which does not rely on a specific method that models the diffusion characteristics. The dissimilarity metric is based on principal component analysis (PCA) and is ideally suited for DWIs, in which the signal contrast varies drastically as a function of the applied gradient orientation. The proposed method is tested on synthetic data, with known ground-truth transformation parameters, and real diffusion MRI data, resulting in successful alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although noise in MR images is Rician distributed, for SNR > 5 it can be approximated with a Gaussian distribution [19].

References

  1. Balci, S. et al.: Free-form B-Spline deformation model for groupwise registration. Proc. Stat. Regis. Workshop (MICCAI). 23–30 (2007)

    Google Scholar 

  2. Behrens, T.E.J., et al.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34, 144–155 (2007)

    Article  Google Scholar 

  3. de Geeter, N., et al.: A DTI-based model for TMS using the independent impedance method with frequency-dependent tissue parameters. Phys. Med. Biol. 57, 2169–2188 (2012)

    Article  Google Scholar 

  4. Fung, T.C.: Computation of the matrix exponential and its derivatives by scaling and squaring. Int. J. Numer. Methods Eng. 59, 1273–1286 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jensen, H.J., et al.: Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53, 1432–1340 (2005)

    Article  Google Scholar 

  6. Jones, D.K., Leemans, A.: Diffusion tensor imaging. Methods Mol. Biol. 711, 127–144 (2011)

    Article  Google Scholar 

  7. Klein, S., et al.: Adaptive stochastic gradient descent optimization for image registration. Int. J. Comput. Vis. 81, 227–239 (2009)

    Article  Google Scholar 

  8. Klein, S., et al.: elastix: a toolbox for intensity based medical image registration. IEEE Trans. Med. imaging 29, 196–205 (2010)

    Google Scholar 

  9. Leemans, A., et al.: Mathematical framework for simulating diffusion tensor MR neural fiber bundles. Magn. Reson. Med. 53, 944–953 (2005)

    Article  Google Scholar 

  10. Leemans, A., et al.: Multiscale white matter fiber tract coregistration: a new feature-based approach to align diffusion tensor data. Magn. Reson. Med. 55, 1414–1423 (2006)

    Article  Google Scholar 

  11. Leemans, A., et al.: The B-matrix must be rotated when correcting for subject motion in DTI data. Magn. Reson. Med. 61, 1336–1349 (2009)

    Article  Google Scholar 

  12. Leemans, A., et al.: ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In: 17th Annual Meeting of International Society for Magnetic Resonance in Medicine, Hawaii, 2009, p. 3537

    Google Scholar 

  13. Marsland, S., et al.: A minimum description length objective function for groupwise non-rigid image registration. Image Vis. Comput. 26, 333–346 (2008)

    Article  Google Scholar 

  14. Melbourne, A., et al.: Registration of dynamic contrast-enhanced MRI using a progressive principal component registration (PPCR). Phys. Med. Biol. 52, 5147–5156 (2007)

    Article  Google Scholar 

  15. Metz, C.T., et al.: Nonrigid registration of dynamic medical imaging data using nD+t B-splines and a groupwise optimization approach. Med. Image Anal. 15, 238–249 (2010)

    Article  Google Scholar 

  16. Reijmer, Y.D., et al.: Improved sensitivity to cerebral white matter abnormalities in Alzheimer’s disease with spherical deconvolution based tractography. PLoS one. 7, 1371 (2012)

    Article  Google Scholar 

  17. Rohde, G.K., et al.: Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn. Reson. Med. 51, 103–114 (2004)

    Article  Google Scholar 

  18. Schultz, T., Seidel, H.: Using eigenvalue derivatives for edge detection in DT-MRI data. In: Rigoll, G. (ed.) Pattern Recognition, vol. 5096, pp. 193–202. Springer, Berlin (2008)

    Chapter  Google Scholar 

  19. Sijbers, J., et al.: Parameter estimation from magnitude MR images. Int. J. Imaging Syst. Technol. 10, 109–114 (1999)

    Article  Google Scholar 

  20. Tournier, J.D., et al.: Diffusion tensor imaging and beyond. Magn. Reson. Med. 65, 1532–1556 (2011)

    Article  Google Scholar 

  21. van der Aa, N.P., et al..: Computation of eigenvalue and eigenvector derivatives for a general complex-valued eigensystem. Electron. J. Linear Algebra 16, 300–314 (2007)

    MATH  MathSciNet  Google Scholar 

  22. van der Aa, N.E., et al.: Does diffusion tensor imaging-based tractography at 3 months of age contribute to the prediction of motor outcome after perinatal arterial ischemic stroke? Stroke 42, 3410–3414 (2011)

    Article  Google Scholar 

  23. Wachinger, C., et al.: Simultaneous registration of multiple images: similarity metrics and efficient optimization. IEEE Trans. Pattern Anal. Mach. Intell. 7, 667–674 (2012)

    Google Scholar 

  24. Wang, H.C., et al.: Diffusion tensor imaging of vascular parkonsonism: structural changes in cerebral white matter and the association with clinical severity. Arch. Neurol. 69, 1340–1348 (2012)

    Article  Google Scholar 

  25. Wedeen, V.J., et al.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005)

    Article  Google Scholar 

  26. Woods, P.: Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. NeuroImage. 18, 769–788 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Huizinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Huizinga, W. et al. (2014). Groupwise Registration for Correcting Subject Motion and Eddy Current Distortions in Diffusion MRI Using a PCA Based Dissimilarity Metric. In: Schultz, T., Nedjati-Gilani, G., Venkataraman, A., O'Donnell, L., Panagiotaki, E. (eds) Computational Diffusion MRI and Brain Connectivity. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-02475-2_15

Download citation

Publish with us

Policies and ethics