Skip to main content

Nanotube Modeling Using Beam Element

  • Chapter
  • First Online:
Finite Element Modeling of Nanotube Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 963 Accesses

Abstract

Advances in computing technology have significantly increased the scientific interest in computer based molecular modeling of nano materials [1]. In order to perform any computational study on molecular properties, it is necessary to create a molecular model. In other words, it is essential to create an accurate model of atomic interactions at the first step. This model could be used to investigate the mechanical properties of a material near molecular length scales [2]. It can be derived by taking into account an appropriate crystal structure. Any technique that can produce a valid model for a given compound seems appropriate. Molecular modeling could be a useful tool at this stage. It is widely employed to determine molecular equilibrium structures. In addition, it could be used to design new materials with desirable properties [3]. These theoretical methods can be classified into two board branch which are ‘‘bottom up’’ and ‘‘top down’’. ‘‘Bottom up’’ is based on quantum/molecular mechanics including the classical MD and ab initio methods. In contrast, ‘‘top down’’ approach arose from continuum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)

    Article  MATH  Google Scholar 

  2. P. Comba, T.W. Hambley, B. Martin, Molecular Modeling of Inorganic Compounds, 3 edn. (Wiley, 2009)

    Google Scholar 

  3. A. Hinchliffe, Molecular Modelling for Beginners (Wiley, 2008)

    Google Scholar 

  4. B.I. Yakobson, P. Avouris, Mechanical properties of carbon nanotubes. Topics Appl. Phys. 80, 287–327 (2001)

    Article  Google Scholar 

  5. B.I. Yakobson, C.J. Brabec, J. Bernholc, Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)

    Article  Google Scholar 

  6. S. Iijima, C. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089–2092 (1996)

    Article  Google Scholar 

  7. M.B. Nardelli, B.I. Yakobson, J. Bernholc, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, 4279 (1998)

    Article  Google Scholar 

  8. L. Vaccarini, C. Goze, L. Henrard, E. Hernández, P. Bernier, A. Rubio, Mechanical and electronic properties of carbon and boron-nitride nanotubes. Carbon 38, 1681–1690 (2000)

    Article  Google Scholar 

  9. Q. Zeng, A. Yu, G. Lu, Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 33, 191–269 (2008)

    Article  Google Scholar 

  10. B.I. Yakobson, M.P. Campbell, C.J. Brabec, J. Bernholc, High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341–348 (1997)

    Article  Google Scholar 

  11. Z. Xin, Z. Jianjun, O.-Y. Zhong-can, Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Phys. Rev. B 62, 13692 (2000)

    Article  Google Scholar 

  12. M.M. Shokrieh, R. Rafiee, On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos. Struct. 92, 647–652 (2010)

    Article  Google Scholar 

  13. B.B.Q. Lu, The role of atomistic simulations in probing the small-scale aspects of fracture—a case study on a single-walled carbon nanotube. Eng. Fract. Mech. 72, 2037–2071 (2005)

    Article  Google Scholar 

  14. N.L. Allinger, in Molecular Structure. Molecular Structures by Computational Methods (Wiley, 2010)

    Google Scholar 

  15. N.L. Allinger, Molecular Structure: Understanding Steric and Electronic Effects from Molecular Mechanics (Wiley, 2010)

    Google Scholar 

  16. R. Ruoff, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C.R. Phys. 4, 993–1008 (2003)

    Article  Google Scholar 

  17. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235–430 (2002)

    Article  Google Scholar 

  18. S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990)

    Article  Google Scholar 

  19. N.L. Allinger, Conformational analysis. 130. mm2. a hydrocarbon force field utilizing vi and v2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134 (1977)

    Article  Google Scholar 

  20. G.C. Abell, Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B 31, 6184–6196 (1985)

    Article  Google Scholar 

  21. J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988)

    Article  Google Scholar 

  22. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  Google Scholar 

  23. D.H. Robertson, D.W. Brenner, J.W. Mintmire, Energetics of nanoscale graphitic tubules. Phys. Rev. B 45, 12592–15595 (1992)

    Article  Google Scholar 

  24. D.G. Pettifor, I.I. Oleinik, Bounded analytic bond-order potentials for sigma and pi bonds. Phys. Rev. Lett. 84, 4124 (2000)

    Article  Google Scholar 

  25. Z.-C. Tu, Z.-C. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys. Rev. B 65, 233407–4 (2002)

    Google Scholar 

  26. T. Lenosky, X. Gonze, M. Teter, V. Elser, Energetics of negatively curved graphitic carbon. Nature 355, 333–335 (1992)

    Article  Google Scholar 

  27. L. Zhang, C. Wan, Y. Zhang, Morphology and electrical properties of polyamide 6/polypropylene/multi-walled carbon nanotubes composites. Compos. Sci. Technol. 69, 2212–2217 (2009)

    Article  Google Scholar 

  28. G.M. Odegarda, T.S. Gatesb, L.M. Nicholsonc, K.E. Wised, Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62, 1869–1880 (2002)

    Article  Google Scholar 

  29. H. Zhang, J. Wang, X. Guo, Predicting the elastic properties of single-walled carbon nanotubes. J. Mech. Phys. Solids 53, 1929–1950 (2005)

    Article  MATH  Google Scholar 

  30. C. Li, A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  31. H. Wan, F. Delale, A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45, 43–51 (2010)

    Article  MATH  Google Scholar 

  32. K. Tserpes, P. Papanikos, Finite element modeling of single-walled carbon nanotubes. Compos. B Eng. 36, 468–477 (2005)

    Article  Google Scholar 

  33. C.-W. Fan, J.-H. Huang, C. Hwu, Y.-Y. Liu, Mechanical properties of single-walled carbon nanotubes—a finite element approach. Adv. Mater. Res. 33–37, 937–942 (2008)

    Article  Google Scholar 

  34. C.W. Fan, Y.Y. Liu, C. Hwu, Finite element simulation for estimating the mechanical properties of multi-walled carbon nanotubes. Appl. Phys. A 95, 819–831 (2009)

    Article  Google Scholar 

  35. C. Li, T.-W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63, 1517–1524 (2003)

    Article  Google Scholar 

  36. Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914–944 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Awang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Awang, M., Mohammadpour, E., Muhammad, I.D. (2016). Nanotube Modeling Using Beam Element. In: Finite Element Modeling of Nanotube Structures. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03197-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03197-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03196-5

  • Online ISBN: 978-3-319-03197-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics