Skip to main content

Flame Retardants in Bitumens and Nanocomposites

  • Chapter
  • First Online:
Flame Retardants

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

To realize the flame retardant of bitumens correctly is of great significance for academicians and technicians. This chapter begins by introducing the types and properties of conventional flame retardants modified bitumen. It then based on exist disadvantages of conventional flame retardants modified bitumen, further introduces environmental friendly flame retardants using in bitumen and bitumen/flame retardants nanocomposites. The chapter finally outlines a short commentary on likely future trends and provides some sources of further information and advice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu, S.P., Cong, P.L., Yu, J.Y., et al.: Experimental investigation of related properties of asphalt binder containing various fire retardants. Fuel 85, 1298–1304 (2006)

    Article  Google Scholar 

  2. Luo, X.F., Yu, J.Y., Wu, S.P.: Preparation and properties of fire retardant asphalts. Pet. Asphalt 19, 11–13 (2005). (in Chinese)

    Google Scholar 

  3. Iwata, Y., Koseki, H.: Combustion characteristics of asphalt and sodium compounds. J. Loss Prev. Process Ind. 14, 539–545 (2001)

    Article  Google Scholar 

  4. Hu, S.G., Zhang, H., Wang, J.: Research on alkaline filler fire-retarded asphalt pavement. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 21, 146–148 (2006)

    Google Scholar 

  5. Cong, P.L., Yu, J.Y., Wu, S.P., et al.: Laboratory investigation of the properties of asphalt and its mixtures modified with flame retardant. Constr. Build. Mater. 22, 1037–1042 (2008)

    Article  Google Scholar 

  6. Wu, S.P., Mo, L., Cong, P.L., et al.: Flammability and rheological behavior of mixed flame retardant modified asphalt binders. Fuel 87, 120–124 (2008)

    Article  Google Scholar 

  7. Lu, S.Y., Hamerton, I.: Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 27, 1661–1712 (2002)

    Article  Google Scholar 

  8. Levchik, S.V., Weil, A.E.D.: A review of recent progress in phosphorus-based flame retardants. J. Fire Sci. 24, 345–364 (2006)

    Article  Google Scholar 

  9. Betts, K.S.: New thinking on flame retardants. Environ. Health Perspect. 116, 210–213 (2008)

    Article  Google Scholar 

  10. Tan, Y.Q., Lan, B.W., Ji, L., et al.: Modified techniques of commonly used flame retardant asphalt in asphalt pavement tunnel. J. Chong Qing Jiao Tong Univ. (Nat. Sci.) 28, 711–719 (2009)

    Google Scholar 

  11. Ji, L., Tan, Y.Q., Zhang, X.J., et al.: Research on the effect of the flame retardant in reducing the flammability of the bitumen. J. Harbin Inst. Technol. 18, 144–148 (2011)

    Google Scholar 

  12. Ding, Q.J., Shen, F., Liu, X.Q., et al.: Research optimization on flame-retarding asphalt system based on ATH. Airfield Highw. Pavements 329, 241–252 (2008)

    Google Scholar 

  13. Jia, X.Y., Li, L.H., Meng, Q.N.: Evaluation of asphalt binder with flame retardant additives. Geotech. Spec. Publ. 223, 33–40 (2011)

    Google Scholar 

  14. Cervantes-Uc, J.M., Cauich-Rodriguez, J.V., Vazquez-Torres, H., et al.: TGA/FTIR study on thermal degradation of polymethacrylates containing carboxylic groups. Polym. Degrad. Stab. 91, 3312–3321 (2006)

    Article  Google Scholar 

  15. Jang, B.N., Wilkie, C.A.: A TGA/FTIR and mass spectral study on the thermal degradation of bisphenol a polycarbonate. Polym. Degrad. Stab. 86, 419–430 (2004)

    Article  Google Scholar 

  16. Marcilla, A., Gomez, A., Menargues, S.: TG/FTIR study of the thermal pyrolysis of EVA copolymers. Anal. Appl. Pyrol. 74, 224–230 (2005)

    Article  Google Scholar 

  17. Yaman, S.: Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manage. 45, 651–671 (2004)

    Article  Google Scholar 

  18. Xu, T., Huang, X.M.: Study on combustion mechanism of asphalt binder by using TG–FTIR technique. Fuel 89, 2185–2190 (2010)

    Article  Google Scholar 

  19. Yu, J.Y., Cong, P.L., Wu, S.P.: Investigation of the properties of asphalt and its mixtures containing flame retardant modifier. Constr. Build. Mater. 23, 2277–2282 (2009)

    Article  Google Scholar 

  20. Xu, T., Huang, X.M.: Pyrolysis properties and kinetic model of an asphalt binder containing a flame retardant. Appl. Polym. Sci. 19, 2661–2665 (2011)

    Article  Google Scholar 

  21. Faghihi, J., Morshedian, J., Ahmadi, S.: Effect of fillers on the fire retardant properties of intumescent polypropylene compounds. Polym. Polym. Compos. 16, 315–322 (2008)

    Google Scholar 

  22. Mothe, C.G., Miranda, I.C.: Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J. Therm. Anal. Calorim. 97, 661–665 (2009)

    Article  Google Scholar 

  23. Xu, T., Huang, X.M.: A TG-FTIR investigation into smoke suppression mechanism of magnesium hydroxide in asphalt combustion process. Anal. Appl. Pyrol. 87, 217–223 (2010)

    Article  Google Scholar 

  24. Demir, H., Arkis, E., Balkose, D.: Synergistic effect of natural zeolites on flame retardant additives. Polym. Degrad. Stab. 89, 478–483 (2005)

    Article  Google Scholar 

  25. Toldy, A., Toth, N., Anna, P., et al.: Synthesis of phosphorus-based flame retardant systems and their use in an epoxy resin. Polym. Degrad. Stab. 91, 585–592 (2006)

    Article  Google Scholar 

  26. Shehata, A.B.: A new cobalt chelate as flame retardant for polypropylene filled with magnesium hydroxide. Polym. Degrad. Stab. 85, 577–582 (2004)

    Article  Google Scholar 

  27. Wang, Z.Z., Qu, B.J., Fan, W.C.: Combustion characteristics of halogen-free flame-retarded polyethylene containing magnesium hydroxide and some synergists. J. Appl. Polym. Sci. 8, 206–214 (2001)

    Article  Google Scholar 

  28. Yen, Y.Y., Wang, H.T., Guo, W.J.: Synergistic effect aluminum hydroxide and nanoclay on flame retardancy and mechanical properties of EPDM composites. Appl. Polym. Sci. 130, 2042–2048 (2013)

    Article  Google Scholar 

  29. Liang, Y.S., Yu, J.Y., Feng, Z.G., et al.: Flammability and thermal properties of bitumen with aluminium trihydroxide and expanded vermiculite. Constr. Build. Mater. 48, 1114–1119 (2013)

    Article  Google Scholar 

  30. Liu, X.J., Ren, Y.: Effect of aluminum hydroxide flame retardants on the performance of asphalt and asphalt mixture. Northern Commun. 6, 9–11 (2013). (In Chinese)

    Google Scholar 

  31. Bertelli, G., Camino, G., Marchetti, E., et al.: Parameters affecting fire retardant effectiveness in intumescent systems. Polym. Degrad. Stab. 25, 277–292 (1989)

    Article  Google Scholar 

  32. Camino, G., Costa, L., Martinasso, G.: Intumescent fire-retardant systems. Polym. Degrad. Stab. 23, 359–376 (1989)

    Article  Google Scholar 

  33. Ling, T.Q., Zhang, R.Z., Ling, H.Y., et al.: On flame retardant performance of intumescent asphalt flame retardant. J. Chong Qing Jiao Tong Univ. (Nat. Sci.) 30, 948–951 (2011). (in Chinese)

    Google Scholar 

  34. Zhang, R., Huang, X.M.: Development and performance test of fire resistant asphalt without halogen. J. Highw. Transp. Res. Dev. 24, 40–43 (2007). (in Chinese)

    Google Scholar 

  35. Bourbigot, S., Le, B.M., Duquesne, S., et al.: Recent advances for intumescent polymers. Macromol. Mater. Eng. 289, 499–511 (2004)

    Article  Google Scholar 

  36. Alexander, B.M.: Flame retardant design for the future. Mater. China 32, 1674–3962 (2013). (in Chinese)

    Google Scholar 

  37. Dong, X.H., Li, N.: Application of calcium sulfate whisker in development of flame retardant asphalt. Transp. Stand. 42, 24–26 (2014). (In Chinese)

    Google Scholar 

  38. Ma, H.Y., Song, P.A., Fang, Z.P.: Flame retarded polymer nanocomposites: development, trend and future perspective. Sci. China Chem. 54, 302–313 (2011)

    Article  Google Scholar 

  39. Du, J.X., Zhu, J., Wilkie, C.A., et al.: An XPS investigation of thermal degradation and charring on PMMA clay nanocomposites. Polym. Degrad. Stab. 77, 377–381 (2002)

    Article  Google Scholar 

  40. Du, J.X., Wang, J.Q., Su, S.P., et al.: Additional XPS studies on the degradation of poly (methyl methacrylate) and polystyrene nanocomposites. Polym. Degrad. Stab. 83, 29–34 (2004)

    Article  Google Scholar 

  41. Wang, J.Q., Du, J.X., Zhu, J., et al.: An XPS study of the thermal degradation and flame retardant mechanism of polystyrene-clay nanocomposites. Polym. Degrad. Stab. 77, 249–252 (2002)

    Article  Google Scholar 

  42. Du, J.X., Wang, D.Y., Wilkie, C.A., et al.: An XPS investigation of thermal degradation and charring on poly (vinyl chloride)-clay nanocomposites. Polym. Degrad. Stab. 79, 319–324 (2003)

    Article  Google Scholar 

  43. Lewin, M., Pearce, E.M., Levon, K., et al.: Nanocomposites at elevated temperatures: migration and structural changes. Polym. Adv. Technol. 17, 226–234 (2006)

    Article  Google Scholar 

  44. Zhang, H.L., Shi, C.J., Han, J., et al.: Effect of organic layered silicates on flame retardancy and aging properties of bitumen. Constr. Build. Mater. 40, 1151–1155 (2013)

    Article  Google Scholar 

  45. Ma, H.Y., Tong, L.F., Xu, Z.B., et al.: Clay network in ABS-graft-MAH nanocomposites: rheology and flammability. Polym. Degrad. Stab. 92, 1439–1445 (2007)

    Article  Google Scholar 

  46. Thomson, H.E., Drysdale, D.D.: Flammability of plastics. I: ignition temperatures. Fire Mater. 11, 163–172 (1987)

    Article  Google Scholar 

  47. Babrauskas, V.: Ignition handbook: principles and applications to fire safety engineering, fire investigation, risk management and forensic science. Fire Saf. J. 39, 255–256 (2004)

    Article  Google Scholar 

  48. Laoutid, F., Bonnaud, L., Alexandre, M., et al.: New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng.: R: Rep. 63, 100–125 (2009)

    Article  Google Scholar 

  49. Morgan, A.B.: Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym. Adv. Technol. 17, 206–217 (2006)

    Article  Google Scholar 

  50. Kiliaris, P., Papaspyrides, C.D.: Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog. Polym. Sci. 35, 902–958 (2010)

    Article  Google Scholar 

  51. Levchik, S.V.: Fire Retardant Polymer Nanocomposites, pp. 1–30. Wiley, New Jersey (2007)

    Book  Google Scholar 

  52. Zheng, X.X., Wilkie, C.A.: Flame retardancy of polystyrene nanocomposites based on an oligomeric organically-modified clay containing phosphate. Polym. Degrad. Stab. 81, 539–550 (2003)

    Article  Google Scholar 

  53. Lewin, M.: Unsolved problems and unanswered questions in flame retardance of polymers. Polym. Degrad. Stab. 88, 13–19 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henglong L. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, H.L., Yu, J.Y., Zhu, C.Z. (2015). Flame Retardants in Bitumens and Nanocomposites. In: Visakh, P., Arao, Y. (eds) Flame Retardants. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03467-6_7

Download citation

Publish with us

Policies and ethics