Skip to main content

New Horizons for the Production of Industrial Enzymes by Solid-State Fermentation

  • Chapter
  • First Online:
Biosystems Engineering: Biofactories for Food Production in the Century XXI

Abstract

This review tries to shed some light on the basic principles that might help to improve industrial production of enzymes by SSF, mainly in the research subjects of strain improvement, online process control, and the use of crude enzyme preparations in food, feed, and biopharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akita O (2007) History of research and development of the sake brewing technology. Foods and Food Ingredients J Japan 212:719

    CAS  Google Scholar 

  • Alltech de México S.A. de C.V. (2013) http://www.alltechmexico.net/index.html. Accessed on 28 Sept 2013

  • Antier P, Minjares A, Roussos S, Raimbault M, Viniegra-González G (1993) Pectinase-hyper producing mutants of Aspergillus niger C28B25 for solid-state fermentation of coffee pulp. Enzyme and Microbial Technology 15:254–260

    Article  CAS  Google Scholar 

  • Araya MM, Arrieta JJ, Pérez-Correa JR, Biegler LT, Jorquera H (2007) Fast and reliable calibration of solid substrate fermentation kinetic models using advanced non-linear programming techniques. Electron J Biotechnol 10:48–60

    Article  Google Scholar 

  • Ashokkumar B, Senthilkumar SR, Gunasekaran P (2004) Derepressed 2-Deoxyglucose-resistant mutants of Aspergillus niger with altered hexokinase and acid phosphatase activity in hyper production of beta-fructo furanosidase. Appl Biochem Biotechnology 118:89–96

    Article  CAS  Google Scholar 

  • Auria R, Hernández S, Raimbault M, Revah S (1990) Ion exchange resin a model support for solid growth fermentation of Aspergillus niger. Biotechnol Bioeng 6:391–396

    Google Scholar 

  • Auria R, Morales M, Villegas E, Revah S (1993) Influence of mold growth on the pressure-drop in aerated solid-state fermenters. Biotechnol Bioeng 41:1007–1013

    Article  CAS  Google Scholar 

  • Bellon-Maurel W, Orliac O, Christen P (2003) Sensors and measurements in solid state fermentation: a review. Process Biochem 38:881–896

    Article  CAS  Google Scholar 

  • Biesebeke R, Ruijter G, Rahardjo YS, Hoogschagen MJ, Heerikhuisen MLA, van Driel KGA, Schutyser MAI, Dijksterhuis J, Zhu Y, Weber JF, de Vos WM, van den Hondel KAMJJ, Rinzema A, Punt PJ (2002) Aspergillus oryzae in solid‐state and submerged fermentations. FEMS Yeast Res 2:245–248.

    Google Scholar 

  • Biesebeke RT, van Biezen N, de Vos WM, van den Hondel CAMJJ, Punt PJ (2005) Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation. Appl Microbiol Biotechnol 67:75–82

    Article  Google Scholar 

  • Bokhari SAI, Latif F, Rajoka MI (2008) Kinetics of high-level of beta-glucosidase production by a 2-deoxyglucose-resistant mutant of Humicola lanuginosa in submerged fermentation. Braz J Microbiol 39:724–733

    Article  Google Scholar 

  • Bokhari SAI, Rajoka MI, Javaid A, Shafiq-ur-Rehman F, Ishtiaq-ur-Rehman F, Latif F (2010) Novel thermodynamics of xylanase formation by a 2-deoxy-d-glucose resistant mutant of Thermomyces lainuginosus and its xylanase potential for biobleachability. Bioresour Technol 101:2800–2808

    Google Scholar 

  • Bulock JD, Hamilton D, Hulme MA, Powell AJ, Smalley HM, Shepherd D, Smith GN (1965) Metabolic development and secondary biosynthesis in Penicillium urticae. Can J Microbiol 11:765–778

    Article  CAS  Google Scholar 

  • Cammarota MC, Teixeira G, Freire DMG (2001) Enzymatic pre-hydrolysis and anaerobic degradation of high fat contents wastewaters. Biotechnol Lett 23:1591–1595

    Article  CAS  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  CAS  Google Scholar 

  • Chinn MS, Nokes SE, Gates RS (2003) PC-based data acquisition for a solid substrate cultivation deep bed reactor. Appl Eng Agric 19:237–245

    Article  Google Scholar 

  • Couri S, Merces EP, Neves BCV, Senna LF (2006) Digital image processing as a tool to monitor biomass growth in Aspergillus niger 3T5B8 solid-state fermentation: preliminary results. J Microscopy-Oxford 224:290–297

    Google Scholar 

  • Damasceno FRC, Freire DMG, Cammarota MC (2008) Impact of the addition of an enzyme pool on an activated sludge system treating dairy wastewater under fat shock loads. J Chem Technol Biotechnol 83:730–738

    Article  CAS  Google Scholar 

  • Demain A, Davis JE (1998) Manual of industrial microbiology and biotechnology. American Society for Microbiology Press, Washington DC. As cited by Parekh et al. (2000)

    Google Scholar 

  • Dunncoleman NS, Bloebaum P, Berka RM, Bodie E, Robinson N, Armstrong G, Ward M, Przetak M, Carter GL, Lacost R, Wilson LJ, Kodama KH, Baliu EF, Bower B, Lamsa M, Heinsohn H (1991) Commercial levels of chymosin production by Aspergillus. Bio-Technology 9:976–981

    Article  CAS  Google Scholar 

  • Dutra JCV, Terzi SD, Bevilaqua JV, Damaso MCT, Couri S, Langone MAP, Senna LF (2008) Lipase production in solid-state fermentation monitoring biomass growth of Aspergillus niger using digital image processing. Appl Biochem Biotechnol 147:63–75

    Article  CAS  Google Scholar 

  • Dykhuizen DE, Dean AM (1990) Enzyme activity and fitness-evolution in solution. Trends Ecol Evol 5:257–262

    Article  CAS  Google Scholar 

  • Ebine H (2004) Industrialization of Japanese miso fermentation. In: Food Science and Technology. Marcel Dekker, New York, pp 99–142

    Google Scholar 

  • Entian KD (1980) Genetic and biochemical-evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol Gen Genet 178:633–637

    Article  CAS  Google Scholar 

  • Favela-Torres E, Córdova-López J, García-Rivero M, Gutiérrez-Rojas M (1998) Kinetics of growth of Aspergillus niger during submerged, agar surface and solid state fermentations. Process Biochem 33:103–107

    Article  CAS  Google Scholar 

  • Fernandes MLM, Saad EB, Meira JA, Ramos LP, Mitchell DA, Krieger N (2007) Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. J Mol Catal B-Enzym 44:8–13

    Article  CAS  Google Scholar 

  • Geysens S, Whyteside G, Archer DB (2009) Genomics of protein folding in the endoplasmic reticulum, secretion stress and glycosylation in the Aspergilli. Fungal Genet Biol 46:S121–S140

    Article  CAS  Google Scholar 

  • Godoy MG, Gutarra M, Maciel FM, Felix SP, Bevilaqua JV, Machado OLT, Freire DMG (2011) Use of a low-cost methodology for biodetoxification of castor bean waste and lipase production. Enzym Microb Technol 44:317–322

    Article  Google Scholar 

  • Heijnen JJ, Roels JA (1981) A macroscopic model describing yield and maintenance relationships in aerobic fermentation processes. Biotechnol Bioeng 23:739–763

    Article  CAS  Google Scholar 

  • Hesseltine CW (1983) Microbiology of oriental fermented foods. Ann Rev Microbiol 37:575–601

    Article  CAS  Google Scholar 

  • Hesseltine CW, Wang HL (1967) Traditional fermented foods. Biotechnol Bioeng 9:275–288

    Google Scholar 

  • Heyland J, Fu JA, Blank LM, Schmid A (2010) Quantitative physiology of Pichia pastoris during glucose-limited high-cell density fed-batch cultivation for recombinant protein production. Biotech Bioeng 107:357–368

    Article  CAS  Google Scholar 

  • Hill AV (1928) The diffusion of oxygen and lactic acid through tissues. Proc R Soc Lond B 104:39–96

    Article  CAS  Google Scholar 

  • Hölker U (2007) Cultivation method for micro-organisms and bioreactor EP 1517985 B1

    Google Scholar 

  • Hoskins B, Lyons M (2009) Improving bioethanol yield: the use of solid‐state fermentation products grown on DDGS. J I Brewing 115:64–70

    Google Scholar 

  • Hoogschagen M, Zhu Y, van As H, Tramper J, Rinzema A (2001) Influence of wheat type and pretreatment on fungal growth in solid-state fermentation. Biotechnol Lett 23:1183–1187

    Article  CAS  Google Scholar 

  • Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–189

    Article  CAS  Google Scholar 

  • Ikasari L, Mitchell DA (2000) Two-phase model of the kinetics of growth of Rhizopus oligosporus in membrane culture. Biotechnol Bioeng 68:619–627

    Article  CAS  Google Scholar 

  • Ishida H, Hata Y, Ichikawa E, Kawato A, Suginami K, Imayasu S (1998) Regulation of the glucoamylase-encoding gene glaB, expressed in solid-state culture (koji) of Aspergillus oryzae. J Ferment Bioeng 86:301–307

    Article  CAS  Google Scholar 

  • Ishida H, Hata Y, Kawato A, Abe Y (2006) Improvement of the glaB promoter expressed in solid-state fermentation. Biosci Biotechnol Biochem 70:1181–1187

    Article  CAS  Google Scholar 

  • Jung F, Cammarota MC, Freire DMG (2002) Impact of enzymatic pre-hydrolysis on batch activated sludge systems dealing with oily wastewaters. Biotechnol Lett 24:1797–1802

    Article  CAS  Google Scholar 

  • Kyrylyuk AV, Philipse AP (2011) Effect of particle shape on the random packing density of amorphous solids. Phys Status Solidi A Appl Mater Sci 208:2299–2302

    Article  CAS  Google Scholar 

  • Lareo C, Sposito AF, Bossio AL, Volpe DC (2006) Characterization of growth and sporulation of Mucor bacilliformis in solid state fermentation on an inert support. Enzym Microb Technol 38:391–399

    Article  CAS  Google Scholar 

  • Laukevics JJ, Apsite AF, Viesturs US, Tengerdy RP (1985) Steric hindrance of growth of filamentous fungi in solid substrate fermentation of wheat straw. Biotechnol Bioeng 27:1687–1691

    Article  CAS  Google Scholar 

  • Loera O, Viniegra-González G (1998) Identification of growth phenotypes in Aspergillus niger pectinase over-producing mutants using image analysis procedures. Biotechnol Tech 12:801–804

    Article  CAS  Google Scholar 

  • Machida M, Yamada O, Gomi K (2008) Genomics of Aspergillus oryzae learning from the history of koji mold and exploration of its future. DNA Res 15:173–183

    Article  CAS  Google Scholar 

  • Martínez-Ruiz A, García HS, Saucedo-Castañeda G, Favela-Torres E (2008) Organic phase synthesis of ethyl oleate using lipases produced by solid-state fermentation. Appl Biochem Biotechnol 151:393–401

    Google Scholar 

  • Matsumoto Y, Saucedo-Castañeda G, Revah S, Shirai K (2004) Production of beta-N-acetylhexosaminidase of Verticillium lecanii by solid state and submerged fermentations utilizing shrimp waste silage as substrate and inducer. Process Biochem 39:665–671

    Article  CAS  Google Scholar 

  • Mazumdar KC, Suryanarayan S (1999) Solid state fermentation. EP1131404 B1

    Google Scholar 

  • McDaniel A, Fuchs E, Liu Y, Ford C (2008) Directed evolution of Aspergillus niger glucoamylase to increase thermostability. Microb Biotechnol 1:523–531

    Article  CAS  Google Scholar 

  • Montiel-González AM, Fernández FJ, Viniegra-González G, Loera O (2002) Invertase production on solid-state fermentation by Aspergillus niger strains improved by parasexual recombination. Appl Biochem Biotechnol 102:63–70

    Article  Google Scholar 

  • Murado MA, Pastrana L, Vázquez JA, Mirón J, González MP (2008) Alcoholic chestnut fermentation in mixed culture. Compatibility criteria between Aspergillus oryzae and Saccharomyces cerevisiae strains. Bioresour Technol 99:7255–7263

    Article  CAS  Google Scholar 

  • Nagy V, Toke ER, Keong LC, Szatzker G, Ibrahim D, Omar IC, Szakacs G, Poppe L (2006) Kinetic resolutions with novel, highly enantioselective fungal lipases produced by solid state fermentation. J Mol Catal B-Enzym 39:141–148

    Article  CAS  Google Scholar 

  • Nopharatana M, Mitchell DA, Howes T (2003) Use of confocal scanning laser microscopy to measure the concentrations of aerial and penetrative hyphae during growth of Rhizopus oligosporus on a solid surface. Biotechnol Bioeng 84:71–77

    Article  CAS  Google Scholar 

  • Oostra J, le Comte EP, van den Heuvel JC, Tramper J, Rinzema A (2001) Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnol Bioeng 75:13–24

    Article  CAS  Google Scholar 

  • Ortega-Sánchez E, Loera O, Viniegra-González G (2012) The effect of the ratio between substrate concentration and specific area of the support on the biomass yield of fungal surface cultures. Rev Mex Ing Quim 11:485–494

    Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301

    Article  CAS  Google Scholar 

  • Pirt SJ (1966) A theory of the mode of growth of fungi in the form of pellets in submerged culture. Proc R Soc Lond B 166:369–373

    Article  CAS  Google Scholar 

  • Pirt SJ (1967) A kinetic study of the mode of growth of surface colonies of bacteria and fungi. J Gen Microbiol 47:181–197

    Article  CAS  Google Scholar 

  • Price ND, Papin JA, Schilling CH, Palsson BO (2003) Genome-scale microbial in silico models the constraints-based approach. Trends Biotechnol 21:162–169

    Article  CAS  Google Scholar 

  • Rahardjo YSP, Weber FJ, le Comte EP, Tramper J, Rinzema A (2002) Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system. Biotechnol Bioeng 78:539–544

    Article  Google Scholar 

  • Rajoka MI (2005) Double mutants of Cellulomonas biazotea for production of cellulases and hemicellulases following growth on straw of a perennial grass. World J Microbiol Biotechnol 21:1063–1066

    Article  CAS  Google Scholar 

  • Rajoka MI, Khan S (2005) Hyper-production of a thermotolerant beta-xylosidase by a deoxy-d-glucose and cycloheximide resistant mutant derivative of Kluyveromyces marxianus PPY 125. Electron J Biotechnol 8:177–184

    Article  CAS  Google Scholar 

  • Rajoka MI, Yasmeen A (2005) Improved productivity of beta-fructofuranosidase by a derepressed mutant of Aspergillus niger from conventional and non-conventional substrates. World J Microbiol Biotechnol 21:471–478

    Article  CAS  Google Scholar 

  • Rathbun BL, Shuler ML (1983) Heat and mass-transfer effects in static solid-substrate fermentations—design of fermentation chambers. Biotech Bioeng 25:929–938

    Article  CAS  Google Scholar 

  • Ridder ER, Nokes SE, Knutson BL (1998) Optimization of solid-state fermentation parameters for the production of xylanase by Trichoderma longibrachiatum on wheat bran. Transactions of the ASAE 41:1453–1459

    Article  CAS  Google Scholar 

  • Rigo E, Rigoni RE, Lodea P, Oliveira D, Freire DMG, Teichel H, Dillucio M (2008) Comparison of two lipases in the hydrolysis of oil and grease in wastewater of the swine meat industry. Ind Eng Chem Res 47:1760–1765

    Article  CAS  Google Scholar 

  • Rodríguez JA, Mateos JC, Nungaray J, González V, Bhagnagar T, Roussos S, Córdova J, Baratti J (2006) Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem 41:2264–2269

    Article  Google Scholar 

  • Rosa DR, Cammarota MC, Freire DMG (2006) Production and Utilization of a new solid enzymatic preparation produced by Penicillium restrictum in activated sludge systems treating wastewater with high levels of oil and grease. Environ Eng Sci 23:813–822

    Article  Google Scholar 

  • Salum TFC, Villeneuve P, Barea B, Yamamoto CI, Cocco LC, Mitchell DA, Krieger N (2010) Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochem 45:1348–1354

    Article  CAS  Google Scholar 

  • Saucedo-Castañeda G, Gutiérrez-Rojas M, Bacquet G, Raimbault M, Viniegra G (1990) Heat transfer simulation in solid substrate fermentation. Biotechnol Bioeng 35:802–808

    Article  Google Scholar 

  • Saucedo-Castañeda G, Trejo-Hernández MR, Lonsane BK, Navarro JM, Roussos S, Dufour D, Raimbault M (1994) On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations. Process Biochem 29:13–24

    Article  Google Scholar 

  • Schmidt J, Szakacs G, Cenkvari E, Sipocz J, Urbanszki K, Tengerdy RP (2001) Enzyme assisted ensiling of alfalfa with enzymes by solid substrate fermentation. Bioresour Technol 76:207–212

    Article  CAS  Google Scholar 

  • Shankaranand VS, Ramesh MV, Lonsane BK (1992) Idiosyncrasies of solid-state fermentation systems in the biosynthesis of metabolites by some bacterial and fungal cultures. Proc Biochem 27:33–36

    Article  CAS  Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ (1995) Fermentation economics. In: Principles of fermentation technology, 2nd edn. Pergamon Press, Oxford. pp 331–341.

    Google Scholar 

  • Takamine J (1894a) Preparing and making taka-koji. US Patent 525,820

    Google Scholar 

  • Takamine J (1894b) Process of making diastatic enzyme. US Patent 525,823

    Google Scholar 

  • Takamine J (1914) Enzymes of Aspergillus oryzae and the application of its amyloclastic enzyme to the fermentation industry. Ind Eng Chem 6:824–828

    Article  CAS  Google Scholar 

  • Terebiznik MR, Pilosof AMR, Moreno S (1996) Effective purification procedure of Aspergillus oryzae alpha-amylase from solid state fermentation cultures including concanavalin A-sepharose. J Food Biochem 19:341–354

    Article  CAS  Google Scholar 

  • Tovar-Castro L, García-Garibay M, Saucedo-Castañeda G (2008) Lactase production by solid-state cultivation of Kluyveromyces marxianus CDBBL 278 on an inert support: effect of inoculum, buffer, and nitrogen source. Appl Biochem Biotechnol 151:610–617

    Article  CAS  Google Scholar 

  • Tsuchiya K, Nagashima T, Yamamoto Y, Gomi K, Kitamoto K, Kumagai C, Tamura G (1994) High level secretion of calf chymosin using a glucoamylase-prochymosin fusion gene in Aspergillus oryzae. Biosci Biotechnol Biochem 58:895–899

    Article  CAS  Google Scholar 

  • Underkofler LA (1938) Production of a diastatic material. US Patent 2,291,009

    Google Scholar 

  • Underkofler LA, Fulmer EI, Schoene L (1939) Saccharification of starchy grain mashes for the alcoholic fermentation industry. Ind Eng Chem 31:734–738

    Article  CAS  Google Scholar 

  • Underkofler LA, Severson GM, Goering KJ, Christensen LM (1947) Commercial production and use of mold bran. Cereal Chem 24:1–22

    CAS  Google Scholar 

  • Valladão ABG, Freire DMG, Cammarota MC (2007) Enzymatic pre-hydrolysis applied to the anaerobic treatment of effluents from poultry slaughterhouses. Int Biodeter Biodegr 60:219–225

    Google Scholar 

  • Van Brunt J (1986) Fungi the perfect hosts? Bio/Technology 4:1056–1068

    Google Scholar 

  • Viniegra-González G, Favela-Torres E, Aguilar CN, et al (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13(Special issue):157–167

    Google Scholar 

  • Virtanen V, Jaaskelainen S, Seiskari P (2008) Reactor and method for solid state fermentation. US Patent 2008057576

    Google Scholar 

  • Wang B, Guo GW, Wang C, Lin Y, Wang XN, Zhao MM, Guo Y, He MH, Zhang Y, Pan L (2010) Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Res 38:5075–5087

    Article  CAS  Google Scholar 

  • Wösten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137:2017–2023

    Article  Google Scholar 

  • Wu YB, Ravindran V, Morel PCH, Hendriks WH, Pierce J (2004) Evaluation of a microbial phytase, produced by solid-state fermentation, in broiler diets. 1. Influence on performance, toe ash contents, and phosphorus equivalency estimates. J Appl Poultry Res 13:373–383

    CAS  Google Scholar 

Download references

Acknowledgments

Part of this work was initiated at Universidad Federal do Rio de Janeiro, financed by the Consejo Nacional de Ciencia y Tecnología (México) and CNPq (Brazil) as a sabbatical leave of absence. Thanks are given for the hospitality of Professor Denise Freire and valuable suggestions from Dr. Sonia Couri. Thanks also to my colleague Prof. Ernesto Favela-Torres for his valuable suggestions and criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Viniegra-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Viniegra-González, G. (2014). New Horizons for the Production of Industrial Enzymes by Solid-State Fermentation. In: Guevara-Gonzalez, R., Torres-Pacheco, I. (eds) Biosystems Engineering: Biofactories for Food Production in the Century XXI. Springer, Cham. https://doi.org/10.1007/978-3-319-03880-3_11

Download citation

Publish with us

Policies and ethics