Skip to main content

Abstract

Models of a system that are mechanistically based make use of the full range of physical principles that influence system behavior. In addition to these expressions, the thermodynamic properties of the entities in the system, as well as of the system as a whole, impact the observed behavior. The thermodynamic relations that are hypothesized to describe a system impact how that system is modeled and the fidelity of the model compared to the actual behavior of the system. Thermodynamics plays a role not only in describing system properties and parameters but also in identifying limits on system behavior that might be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailyn M (1994) A Survey of Thermodynamics. American Institute of Physics Press, New York

    Google Scholar 

  2. Baker G (2005) Thermodynamics in solid mechanics: a commentary. Philos T Roy Soc A 363(1836):2465–2477

    Google Scholar 

  3. Boruvka L (1975) An extension to classical theory of capillarity. Master’s thesis, University of Toronto, Toronto

    Google Scholar 

  4. Boruvka L, Neumann AW (1977) Generalization of the classical theory of capillarity. J Chem Phys 66(12):5464–5476

    Google Scholar 

  5. Bowen RM (1989) Introduction to Continuum Mechanics for Engineers. Plenum, New York

    Google Scholar 

  6. Bower AF (2010) Applied Mechanics of Solids. CRC Press

    Google Scholar 

  7. Butt HJ, Graf K, Kappl M (2003) Physics and Chemistry of Interfaces. Wiley–VCH

    Google Scholar 

  8. Callen HB (1985) Thermodynamics and an Introduction to Thermostatistics. Wiley, New York

    Google Scholar 

  9. Coleman BD (1964) On thermodynamics of materials with memory. Arch Ration Mech An 17:1–46

    Google Scholar 

  10. Coleman BD, Gurtin ME (1967) Thermodynamics with internal state variables. J Chem Phys 47:597–613

    Google Scholar 

  11. De Groot SR, Mazur P (1984) Non-equilibrium Thermodynamics. Dover, New York

    Google Scholar 

  12. Denbigh KG (1981) The Principles of Chemical Equilibrium. Cambridge University Press, Cambridge

    Google Scholar 

  13. Eringen AC (1980) Mechanics of Continua. Krieger, Huntington, NY

    Google Scholar 

  14. Essex C, McKitrick R, Andresen B (2007) Does a global temperature exist? J Non-Equil Thermody 32:1–27

    Google Scholar 

  15. Firoozabadi A (1999) Thermodynamics of Hydrocarbon Reservoirs. McGraw–Hill, New York

    Google Scholar 

  16. Gaydos J, Rotenberg Y, Chen P, Boruvka L, Neumann AW(2011) Generalized theory of capillarity. In: Neumann AW, David R, Zuo Y (eds) Applied Surface Thermodynamics, 2nd edn, CRC Press, Boca Raton, FL, pp 1–48

    Google Scholar 

  17. Gibbs JW (1906) The Scientific Papers of J. Willard Gibbs, Ph.D., LL.D. Longmans, Green, and Company, London

    Google Scholar 

  18. Glansdorff P, Prigogine I (1971) Thermodynamic Theory and Structure, Stability and Fluctuations. John Wiley & Sons, Inc., New York

    Google Scholar 

  19. Graetzel M, Infelta P (2000) The Bases of Chemical Thermodynamics, vol 1. Universal Publishers

    Google Scholar 

  20. Gray WG, Miller CT (2005) Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview. Adv Water Resour 28(2):161–180

    Google Scholar 

  21. Gray WG, Schrefler BA, Pesavento F (2009) The solid phase stress tensor in porous media mechanics and the Hill-Mandel condition. J Mech Phys Solids 57(3):539–554, DOI 10.1016/j.jmps.2008.11.005

    Google Scholar 

  22. Greiner W, Neise L, St¨ocker H (1995) Thermodynamics and Statistical Mechanics. Springer-Verlag, New York

    Google Scholar 

  23. Gurtin ME, Fried E, Anand L (2010) The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge

    Google Scholar 

  24. Gyarmati I (1970) Non–equilibrium Thermodynamics. Springer, Berlin

    Google Scholar 

  25. Jongschaap RJJ, Öttinger HC (2001) Nonequilibrium thermodynamics and complex fluids. J Non-Newton Fluid 96(1-2):1–3

    Google Scholar 

  26. Jou D, Casas-Vázquez J (2001) Extended irreversible thermodynamics and its relation with other continuum approaches. J Non-Newton Fluid 96(1–2):77–104

    Google Scholar 

  27. Jou D, Casas-Vázquez J, Lebon G (1988) Extended irreversible thermodynamics. Rep Prog Phys 51:1105–1179

    Google Scholar 

  28. Jou D, Camacho J, Grmela M (1991) On the nonequilibrium thermodynamics of non-Fickian diffusion. Macromolecules 24:3597–3602

    Google Scholar 

  29. Jou D, Casas-Vázquez J, Lebon G (1999) Extended irreversible thermodynamics revisited (1988-1998). Rep Prog Phys 62(7):1035–1142

    Google Scholar 

  30. Jou D, Casas-Vázquez J, Lebon G (2008) Extended irreversible thermodynamics of heat transport: A brief introduction. P Est Acad Sci 57(3):118–126

    Google Scholar 

  31. Jou D, Casas-Vázquez J, Lebon G (2010) Extended Irreversible Thermodynamics. Springer, Berlin

    Google Scholar 

  32. Keszei E (2012) Chemical Thermodynamics: An Introduction. Springer–Verlag, Berlin

    Google Scholar 

  33. Lavenda BH (1978) Thermodynamics of irreversible processes. Macmillan, London

    Google Scholar 

  34. Lebon G (1989) From classical irreversible thermodynamics to extended thermodynamics. Acta Phys Hung 66:241–249

    Google Scholar 

  35. Lebon G, Jou D, Casas-Vázquez J (2008) Understanding Nonequilibrium Thermodynamics. Springer, Berlin

    Google Scholar 

  36. Lewis GN, Randall M (1961) Thermodynamics. McGraw-Hill, New York

    Google Scholar 

  37. Lhuillier D, Grmela M, Lebon G (2003) A comparative study of the coupling of flow with non-Fickean thermodiffusion. Part III: Internal variables. J Non-Equil Thermody 28(1):51–68

    Google Scholar 

  38. Machlup S, Onsager L (1953) Fluctuations and irreversible process. II. Systems with kinetic energy. Phys Rev 91(6):1512–1515

    Google Scholar 

  39. Maugin GA (1999) The Thermomechanics of Nonlinear Irreversible Behaviors: An Introduction. World Scientific Press, Singapore

    Google Scholar 

  40. Maugin GA, Muschik W (1994) Thermodynamics with internal variables. J Non-Equil Thermody 19(3):217–249

    Google Scholar 

  41. Miller CA, Neogi P (1985) Interfacial Phenomena. Marcel Dekker, New York

    Google Scholar 

  42. Müller I (1967) Zum paradoxon der wärmeleitungstheorie. Z Phys A-Hadron Nucl 198(4):329–344

    Google Scholar 

  43. Müller I, Ruggeri T (1998) Rational Extended Thermodynamics. Springer

    Google Scholar 

  44. Narasimhan MNL (1993) Principles of Continuum Mechanics. John Wiley & Sons, Inc., New York, NY

    Google Scholar 

  45. Nettleton RE (1959) Thermodynamics of viscoelastcity in liquids. Phys Fluids 2(3):256–263

    Google Scholar 

  46. Noll W (1974) The Foundations of Mechanics and Thermodynamics. Springer, Berlin

    Google Scholar 

  47. Öttinger HC (2005) Beyond Equilibrium Thermodynamics. John Wiley & Sons, Inc.

    Google Scholar 

  48. Oversteegen SM, Barneveld PA, van Male J, Leermakers FAM, Lyklema J (1999) Thermodynamic derivation of mechanical expressions for interfacial parameters. Phys Chem Chem Phys 1(21):4987–4994

    Google Scholar 

  49. Prigogine I (1961) Introduction to Thermodynamics of Irreversible Processes. Interscience, New York

    Google Scholar 

  50. Rock PA (1969) Chemical Thermodynamics Principles and Applications. Macmillan Company

    Google Scholar 

  51. Tisza L (1966) Generalized Thermodynamics. MIT Press, Cambridge

    Google Scholar 

  52. Truesdell CA (1969) Rational Thermodynamics. McGraw-Hill, New York

    Google Scholar 

  53. Valanis KC, Lalwani S (1977) Thermodynamics of internal variables in the context of the absolute reaction rate theory. J Chem Phys 67:3980–3990

    Google Scholar 

  54. Vavruch I (2002) Conceptual problems of modern irreversible thermodynamics. Chem Listy 96(5):271–275

    Google Scholar 

  55. Woods L (1981) The bogus axioms of continuum mechanics. Bull IMA 17:98–102

    Google Scholar 

  56. Woods L (1982) More on the bogus axioms of continuum mechanics. Bulletin of the Institute of Mathematics and Its Applications 18:64–67

    Google Scholar 

  57. Xia F, Gray WG, Chen P (2003) Thermodynamic fundamental equation of contact lines: selection of independent variables. J Colloid Interf Sci 261(2):464–475

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Gray .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gray, W.G., Miller, C.T. (2014). Microscale Thermodynamics. In: Introduction to the Thermodynamically Constrained Averaging Theory for Porous Medium Systems. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-04010-3_3

Download citation

Publish with us

Policies and ethics