Skip to main content

Biochemical Aspects of Neuroinflammation

  • Chapter
  • First Online:
Inflammation and Oxidative Stress in Neurological Disorders
  • 1701 Accesses

Abstract

Neuroinflammation is an active mechanism that protects neural cells from neurotraumatic, neurodegenerative, and neuropsychiatric diseases. Neuroinflammation is accompanied not only by the activation of resident microglia and astrocytes, but also by infiltrating peripheral macrophages, which release a anti- and pro-inflammatory cytokines, chemokines, glutamate, and ROS. Persistent neuroinflammation in the brain causes neurodegeneration. Proinflammatory cytokines and chemokines support and propagate neuroinflammation through the activation of PLA2, COX-2, and 5-LOX, which generate proinflammatory lipid mediator (prostaglandins, leukotrienes, thromboxanes, and platelet activating factor). Overproduction of lipid mediators during persistent neuroinflammation is closely associated with neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalami OO, Fang TD, Song HM, Nacamuli RP (2003) Physiological features of aging persons. Arch Surg 138:1068–1076

    Article  PubMed  Google Scholar 

  • Aisen PS (2008) The inflammatory hypothesis of Alzheimer disease: dead or alive? Alzheimer Dis Assoc Disord 22:4–5

    Article  PubMed  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Allan SM, Rothwell NJ (2003) Inflammation in central nervous system injury. Philos Trans R Soc Lond B Biol Sci 358:1669–1677

    Article  CAS  PubMed  Google Scholar 

  • Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunol 129:154–169

    Article  CAS  Google Scholar 

  • Aronica E, Fluiter K, Iyer A, Zurolo E, Vreijling J, van Vliet EA, Baayen JC, Gorter JA (2010) Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci 31:1100–1107

    Article  CAS  PubMed  Google Scholar 

  • Arvanitakis Z, Grodstein F, Bienias JL, Schneider JA, Wilson RS, Kelly JF, Evans DA, Bennett DA (2008) Relation of NSAIDs to incident AD, change in cognitive function, and AD pathology. Neurology 70:2219–2225

    Article  CAS  PubMed  Google Scholar 

  • Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, Hudson CE, Cole MJ, Harrison JK, Bickford PC, Gemma C (2009) Fractalkine and CX(3)CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 32:2030–2044

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bales KR, Du Y, Holtzman D, Cordell B, Paul SM (2000) Neuroinflammation and Alzheimer’s disease: critical roles for cytokine/Abetainduced glial activation, NF-kappaB, and apolipoprotein E. Neurobiol Aging 21:427–432, discussion 451–423

    Google Scholar 

  • Bazan NG (2013) The docosanoid neuroprotectin D1 induces homeostatic regulation of neuroinflammation and cell survival. Prostaglandins Leukot Essent Fatty Acids 88:127–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bazan NG, Musto AE, Knott EJ (2011) Endogenous signaling by omega-3 docosahexaenoic acid-derived mediators sustains homeostatic synaptic and circuitry integrity. Mol Neurobiol 44:216–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beal MF (2009) Therapeutic approaches to mitochondrial dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S189–S194

    Article  PubMed  Google Scholar 

  • Beg AA, Sha WC, Bronson RT, Baltimore D (1995) Constitutive NF-kappa B activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev 9:2736–2746

    Article  CAS  PubMed  Google Scholar 

  • Benarroch EE (2011) Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology 77:1198–1204

    Article  PubMed  Google Scholar 

  • Biber K, Neumann H, Inoue K, Boddeke HWGM (2007) Neuronal “On” and “Off” signals control microglia. Trends in Neurosci 30:596–602

    Article  CAS  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    Article  CAS  PubMed  Google Scholar 

  • Bonansco C, Couve A, Perea G, Ferradas CA, Roncagliolo M, Fuenzalida M (2011) Glutamate released spontaneously from astrocytes sets the threshold for synaptic plasticity. Eur J Neurosci 33:1483–1492

    Article  PubMed  Google Scholar 

  • Bonow RH, Aid S, Zhang Y, Becker KG, Bosetti F (2009) The brain expression of genes involved in inflammatory response, the ribosome, and learning and memory is altered by centrally injected lipopolysaccharide in mice. Pharmacogenomics J 9:116–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breitner JC, Haneuse SJ, Walker R, Dublin S, Crane PK, Gray SL, Larson EB (2009) Risk of dementia and AD with prior exposure to NSAIDs in an elderly community-based cohort. Neurology 72:1899–1905

    Article  CAS  PubMed  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    CAS  PubMed  Google Scholar 

  • Calder PC (2012) Long-chain fatty acids and inflammation. Proc Nutr Soc 71:284–289

    Article  PubMed  CAS  Google Scholar 

  • Carmen J, Rothstein JD, Kerr DA (2009) Tumor necrosis factor-alpha modulates glutamate transport in the CNS and is a critical determinant of outcome from viral encephalomyelitis. Brain Res 1262:143–154

    Article  CAS  Google Scholar 

  • Chakraborty S, Kaushik DK, Gupta M, Basu A (2010) Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res 88:1615–1631

    CAS  PubMed  Google Scholar 

  • Charo IF, Peters W (2003) Chemokine receptor 2 (CCR2) in atherosclerosis, infectious diseases, and regulation of T-cell polarization. Microcirculation 10:259–264

    CAS  PubMed  Google Scholar 

  • Chaturvedi RK, Shukla S, Seth K, Chauhan S, Sinha C, Shukla Y, Agrawal AK (2006) Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol Dis 22:421–434

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Swanson RA (2003) The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. J Neurochem 84:1332–1339

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 9:1586–1597

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Kim HS, Shin KY, Kim EM, Kim M, Park CH, Jeong YH, Yoo J, Lee JP, Chang KA, Kim S, Suh YH (2007) Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacol 32:2393–2404

    Article  CAS  Google Scholar 

  • Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4:399–418

    Article  PubMed Central  PubMed  Google Scholar 

  • Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of β- amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists. J Neurosci 20:558–567

    CAS  Google Scholar 

  • Correa-Cerro LS, Mandell JW (2007) Molecular mechanisms of astrogliosis: new approaches with mouse genetics. J Neuropathol Exp Neurol 66:169–176

    Article  CAS  PubMed  Google Scholar 

  • Correale J, Villa A (2004) The neuroprotective role of inflammation in nervous system injuries. J Neurol 251:1304–1316

    Article  PubMed  Google Scholar 

  • Crack PJ, Bray PJ (2007) Toll-like receptors in the brain and their potential roles in neuropathology. Immunol Cell Biol 85:476–480

    Article  CAS  PubMed  Google Scholar 

  • Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT (2011) Age-related alterations in the dynamic behavior of microglia. Aging Cell 10:263–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759

    Article  CAS  PubMed  Google Scholar 

  • Dheen ST, Jun Y, Yan Z, Tay SS, Ling EA (2005) Retinoic acid inhibits expression of TNF-alpha and iNOS in activated rat microglia. Glia 50:21–31

    Article  PubMed  Google Scholar 

  • Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    Article  CAS  PubMed  Google Scholar 

  • Drew PD, Storer PD, Xu JH, Chavis JA (2005) Hormone regulation of microglial cell activation: relevance to multiple sclerosis. Brain Res Rev 48:322–327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468:223–231

    Article  CAS  PubMed  Google Scholar 

  • Fam SR, Gallagher CJ, Salter MW (2000) P2Y(1) purinoceptor mediated Ca2+ signaling and Ca2+ wave propagation in dorsal spinal cord astrocytes. J Neurosci 20:2800–2808

    CAS  PubMed  Google Scholar 

  • Farina C, Aloisi F, Meini E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA (2009a) Hot topics in neural membrane lipidology. Springer, New York, NY

    Book  Google Scholar 

  • Farooqui AA (2009b) Beneficial effects of fish oil on human brain. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegeneration disease. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2011) Lipid mediators and their metabolism in the brain. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2012) Phytochemicals, signal transduction, and neurological disorders. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2013) Metabolic syndrome: an important risk factor for stroke, alzheimer disease, and depression. Springer, New York (In Press)

    Book  Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in brain. Springer, New York, NY

    Book  Google Scholar 

  • Farooqui AA, Antony P, Ong WY, Horrocks LA, Freysz L (2004) Retinoic acid- mediated phospholipase A2 signaling in the nucleus. Brain Res Rev 45:179–195

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2006) Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 58:591–620

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2008) Neurochemical aspects of excitotoxicity. Springer, New York

    Google Scholar 

  • Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45:120–159

    Article  CAS  PubMed  Google Scholar 

  • Floden AM, Li S, Combs CK (2005) Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci 25:2566–2575

    Article  CAS  PubMed  Google Scholar 

  • Galimberti D, Schoonenboom N, Scheltens P, Fenoglio C, Bouwman F, Venturelli E, Guidi I, Blankenstein MA, Bresolin N, Scarpini E (2006) Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch Neurol 63:538–543

    Article  PubMed  Google Scholar 

  • Gemma C, Bickford PC (2007) Interleukin-1beta and caspase-1: players in the regulation of age-related cognitive dysfunction. Rev Neurosci 18:137–148

    CAS  PubMed  Google Scholar 

  • Gibertini M, Newton C, Klein TW, Friedman H (1995) Legionella pneumophila-induced visual learning impairment reversed by anti-interleukin-1 beta. Proc Soc Exp Biol Med 210:7–11

    Article  CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2006) Anti-inflammatory drugs in the treatment of neurodegenerative diseases: current state. Curr Pharmaceut Des 12:3509–3519

    Article  CAS  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelley KW, Johnson RW (2005) Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J 19:1329–1331

    CAS  PubMed  Google Scholar 

  • Gomes-Leal W (2012) Microglial physiopathology: how to explain the dual role of microglia after acute neural disorders? Brain Beha 2:345–356

    Article  Google Scholar 

  • Griffin WS (2006) Inflammation and neurodegenerative diseases. Am J Clin Nutr 83:470S–474S

    CAS  PubMed  Google Scholar 

  • Halliday G, Robinson SR, Shepherd C, Kril J (2000) Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clin Exp Pharmacol Physiol 27:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  CAS  PubMed  Google Scholar 

  • Hays SJ (1998) Therapeutic approaches to the treatment of neuroinflammatory diseases. Curr Pharm Des 4:335–348

    CAS  PubMed  Google Scholar 

  • Helmut K, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  Google Scholar 

  • Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771:1031–1045

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91

    Article  CAS  PubMed  Google Scholar 

  • Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, O’Banion K, Klockgether T, Van Leuven F, Landreth GE (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1–42 levels in APPV717I transgenic mice. Brain 128:1442–1453

    Article  PubMed  Google Scholar 

  • Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M, Low D, Oller G, Almeida F, Choy SH, Grisotto M, Renia L, Conway SJ, Stanley ER, Chan JK, Ng LG, Samokhvalov IM, Merad M, Ginhoux F (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209:1167–1181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system. Glia 40:195–205

    Article  PubMed  Google Scholar 

  • Hwang SH, Wecksler AT, Wagner K, Hammock BD (2013) Rationally designed multitarget agents against inflammation and pain. Curr Med Chem 20:1983–1799

    Article  Google Scholar 

  • Itoh K, Yamamoto M (2005) Regulatory role of the COX-2 pathway in the Nrf2-mediated anti-inflammatory response. J Clin Biochem Nutr 37:9–18

    Article  CAS  Google Scholar 

  • Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ (2005) Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflamm 2:23

    Article  CAS  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, Bickford PC (1999) Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 19:8114–8121

    CAS  PubMed  Google Scholar 

  • Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, Matute C, Tonello F, Gundersen V, Volterra A (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339

    Article  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196:168–179

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Kwon KJ, Park J-Y, Lee SH, Moon C-H, Baik EJ (2002) Effects of peroxisome proliferator-activated receptor agonists on LPS-induced neuronal death in mixed cortical neurons: associated with iNOS and COX-2. Brain Res 941:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kohta M, Kohmura E, Yamashita T (2009) Inhibition of TGF-beta1 promotes functional recovery after spinal cord injury. Neurosci Res 65:393–401

    Article  CAS  PubMed  Google Scholar 

  • Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 105:751–756

    Article  CAS  PubMed  Google Scholar 

  • Kopach O, Kao SC, Petralia RS, Belan P, Tao YX, Voitenko N (2011) Inflammation alters trafficking of extrasynaptic AMPA receptors in tonically firing lamina II neurons of the rat slinal dorsal horn. Pain 152:912–923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Launer LJ, Hoes AW, Ott A, Hofman A, Breteler MM, Stricker BH, in ’t Veld BA (1998) NSAIDs and incident Alzheimer’s disease. The Rotterdam Study. Neurobiol Aging 19:607–611

    Article  PubMed  Google Scholar 

  • Lawrence T, Gilroy DW (2007) Chronic inflammation: a failure of resolution? Int J Exp Pathol 88:85–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee M (2013) Neurotransmitters and Microglial-mediated Neuroinflammation. Curr Protein Pept Sci. 2013 Feb 18. Epub ahead of print

    Google Scholar 

  • Leonoudakis D, Braithwaite SP, Beattie MS, Beattie EC (2004) TNFalpha-induced AMPA-receptor trafficking in CNS neurons: relevance to excitotoxicity? Neuron Glia Biol 1:263–273

    Article  PubMed Central  PubMed  Google Scholar 

  • Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2:612–619

    Article  CAS  PubMed  Google Scholar 

  • Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci 20:5709–5714

    CAS  PubMed  Google Scholar 

  • Lindsey JD, Landfield PW, Lynch G (1979) Early onset and topographical distribution of hypertrophied astrocytes in hippocampus of aging rats: a quantitative study. J Gerontol 34:661–671

    Article  CAS  PubMed  Google Scholar 

  • Lloret S, Moreno JJ (1995) Ca2 + influx, phosphoinositide hydrolysis, and histamine release induced by lysophosphatidylserine in mast cells. J Cell Physiol 165:89–95

    Article  CAS  PubMed  Google Scholar 

  • Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–S240

    CAS  PubMed  Google Scholar 

  • Luna-Medina R, Cortes-Canteli M, Alonso M, Santos A, Martínez A, Perez-Castillo A (2005) Regulation of inflammatory response in neural cells in vitro by thiadiazolidinones derivatives through peroxisome proliferator-activated receptor γ activation. J Biol Chem 280:21453–21462

    Article  CAS  PubMed  Google Scholar 

  • Lynch MA (1998) Age-related impairment in long-term potentiation in hippocampus: a role for the cytokine, interleukin-1 beta? Prog Neurobiol 56:571–589

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Son TG, Camandola S (2007) Viewpoint: mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response 5:174–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meinert CL, McCaffrey LD, Breitner JC (2009) Alzheimer’s disease anti-inflammatory prevention trial: design, methods, and baseline results. Alzheimers Dement 5:93–104

    Article  PubMed Central  PubMed  Google Scholar 

  • Minghetti L, Ajmone-Cat MA, De Berardinis MA, De Simone R (2005) Microglial activation in chronic neurodegenerative diseases: roles of apoptotic neurons and chronic stimulation. Brain Res Rev 48:251–256

    Article  CAS  PubMed  Google Scholar 

  • Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101:249–255

    CAS  PubMed  Google Scholar 

  • Mohri I, Taniike M, Taniguchi H, Kanekiyo T, Aritake K, Inui T, Fukumoto N, Eguchi N, Kushi A, Sasai H, Kanaoka Y, Ozono K, Narumiya S, Suzuki K, Urade Y (2006) Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J Neurosci 26:4383–4393

    Article  CAS  PubMed  Google Scholar 

  • Moore AH, Wu M, Shaftel SS, Graham KA, O’Banion MK (2009) Sustained expression of interleukin-1beta in mouse hippocampus impairs spatial memory. Neuroscience 164:1484–1495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moraes LA, Piqueras L, Bishop-Bailey D (2006) Peroxisome proliferator-activated receptors and inflammation. Pharmacol Ther 110:371–385

    Article  CAS  PubMed  Google Scholar 

  • Morimoto L, Murasugi T, Oda T (2002) Acute neuroinflammation exacerbates excitotoxicity in rat hippocampus in vivo. Exp Neurol 177:95–104

    Article  CAS  PubMed  Google Scholar 

  • Morioka T, Kalehua AN, Streit WJ (1993) Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J Comp Neurol 327:123–132

    Article  CAS  PubMed  Google Scholar 

  • Motoki K, Kishi H, Hori E, Tajiri K, Nishijo H, Muraguchi A (2009) The direct excitatory effect of IL-1beta on cerebellar Purkinje cell. Biochem Biophys Res Commun 379:665–668

    Article  CAS  PubMed  Google Scholar 

  • Mouton PR, Long JM, Lei DL, Howard V, Jucker M, Calhoun ME, Ingram DK (2002) Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res 956:30–35

    Article  CAS  PubMed  Google Scholar 

  • Murray C, Lynch MA (1998) Evidence that increased hippocampal expression of the cytokine, IL-1b, is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci 18:2974–2981

    CAS  PubMed  Google Scholar 

  • Neary JT, McCarthy M, Cornell-Bell A, Kang Y (1999) Trophic signaling pathways activated by purinergic receptors in rat and human astroglia. Prog Brain Res 120:323–332

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  CAS  PubMed  Google Scholar 

  • Ong WY, Tanaka K, Dawe GS, Ittner LM, Farooqui AA (2013) Slow excitotoxicity in Alzheimer’s disease. J Alzheimers Dis 35:643–668

    PubMed  Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50:427–434

    Article  PubMed  Google Scholar 

  • Penninx BW, Kritchevsky SB, Newman AB, Nicklas BJ, Simonsick EM, Rubin S, Nevitt M, Visser M, Harris T, Pahor M (2004) Inflammatory markers and incident mobility limitation in the elderly. J Am Geriatr Soc 52:1105–1113

    Article  PubMed  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    Article  CAS  PubMed  Google Scholar 

  • Priller J, Reddington M, Haas CA, Kreutzberg GW (1998) Stimulation of P2Y-purinoceptors on astrocytes results in immediate early gene expression and potentiation of neuropeptide action. Neuroscience 85:521–525

    Article  CAS  PubMed  Google Scholar 

  • Pugh CR, Nguyen KT, Gonyea JL, Fleshner M, Wakins LR, Maier SF, Rudy JW (1999) Role of interleukin-1 beta in impairment of contextual fear conditioning caused by social isolation. Behav Brain Res 106:109–118

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  CAS  PubMed  Google Scholar 

  • Recchiuti A, Serhan CN (2012) Pro-resolving lipid mediators (SPMs) and their actions in regulating miRNA in novel resolution circuits in inflammation. Front Immunol 3:298

    Article  PubMed Central  PubMed  Google Scholar 

  • Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429–439

    Article  CAS  PubMed  Google Scholar 

  • Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL (2006) Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience 142:1303–1315

    Article  CAS  PubMed  Google Scholar 

  • Rossi AG, Sawatzky DA, Walker A, Ward C, Sheldrake TA, Riley NA et al (2006) Cyclin-dependent kinase inhibitors enhance the resolution of inflammation by promoting inflammatory cell apoptosis. Nat Med 12:1056–1064

    Article  CAS  PubMed  Google Scholar 

  • Rothwell NJ (1999) Annual review prize lecture cytokines—killers in the brain? J Physiol (London) 514:3–17

    Article  CAS  Google Scholar 

  • Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS (2005) Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 118:5691–5698

    Article  CAS  PubMed  Google Scholar 

  • Saugstad JA (2010) MicroRNAs as effectors of brain function with roles in ischemia and injury, neuroprotection, and neurodegeneration. J Cereb Blood Flow Metab 30:1564–1576

    Article  CAS  PubMed  Google Scholar 

  • Schiff L, Hadker N, Weiser S, Rausch C (2012) A literature review of the feasibility of glial fibrillary acidic protein as a biomarker for stroke and traumatic brain injury. Mol Diagn Ther 16:79–92

    Article  CAS  PubMed  Google Scholar 

  • Schmidt O, Heyde C, Ertel W, Stahel P (2005) Closed head injury—an inflammatory disease? Brain Res Rev 48:388–399

    Article  PubMed  Google Scholar 

  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90

    Article  CAS  PubMed  Google Scholar 

  • Schwab JM, Chiang N, Arita M, Serhan CN (2007) Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447:869–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206

    Article  CAS  PubMed  Google Scholar 

  • Serhan CN (2009). Systems approach to inflammation resolution: identification of novel anti-inflammatory and pro-resolving mediators. J Thromb Haemost 7(Suppl 1):44–48

    Article  CAS  PubMed  Google Scholar 

  • Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LA, Perretti M, Rossi AG, Wallace JL (2007) Resolution of inflammation: state of the art, definitions and terms. FASEB J 21:325–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shen WH, Zhang CY, Zhang GY (2003) Antioxidants attenuate reperfusion injury after global brain ischemia through inhibiting nuclear factor-kappa B activity in rats. Acta Pharmacol Sin 24:1125–1130

    CAS  PubMed  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed Central  PubMed  Google Scholar 

  • Soos JM, Ashley TA, Morrow J, Patarroyo JC, Szente BE, Zamvil SS (1999) Differential expression of B7 co-stimulatory molecules by astrocytes correlates with T cell activation and cytokine production. Int Immunol Soos JM, Ashley TA, Morrow J, Patarroyo JC, Szente BE, Zamvil SS. Differential expression of B7 co-stimulatory molecules by astrocytes correlates with T cell activation and cytokine production. Int Immunol 11:1169–1179

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Newman TA, Perry VH, Weller RO (2004) Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis. Neuropathol Appl Neurobiol 30:374–384

    Article  CAS  PubMed  Google Scholar 

  • Szmydynger-Chodobska J, Strazielle N, Gandy JR, Keefe TH, Zink BJ, Ghersi-Egea JF, Chodobski A (2012) Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier. J Cereb Blood Flow Metab 32:93–104

    Article  CAS  PubMed  Google Scholar 

  • Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  • Tansey MG, McCoy MK, Frank-Cannon TC (2007) Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 208:1–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thored P, Heldmann U, Gomes-Leal W, Gisler R, Darsalia V, Taneera J, Nygren JM, Jacobsen SE, Ekdahl CT, Kokaia Z, Lindvall O (2009) Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57:835–849

    Article  PubMed  Google Scholar 

  • Tian L, Rauvala H, Gahmberg CG (2009) Neuronal regulation of immune responses in the central nervous system. Trends Immunol 30:91–99

    Article  CAS  PubMed  Google Scholar 

  • Torra IP, Chinetti G, Duval C, Fruchart JC, Staels B (2001) Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Curr Opin Lipidol 12:245–254

    Article  CAS  PubMed  Google Scholar 

  • Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tremblay M, Zettel ML, Ison JR, Allen PD, Majewska AK (2012) Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia 60:541–558

    Article  PubMed Central  PubMed  Google Scholar 

  • Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37:289–305

    Article  CAS  PubMed  Google Scholar 

  • Uller L, Persson CG, Erjefalt JS (2006) Resolution of airway disease: removal of inflammatory cells through apoptosis, egression or both? Trends Pharmacol Sci 27:461–466

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan JB, Walle T (2003) Cellular uptake and efflux of the tea flavonoid (-) epicatechin-3-gallate in the human intestinal cell line Caco-2. J Pharmacol Exp Ther 307:745–752

    Article  CAS  PubMed  Google Scholar 

  • Van den Berghe W, Vermeulen L, Delerive P, De Bosscher K, Staels B, Haegeman G (2003) A paradigm for gene regulation: inflammation, NF-kappaB and PPAR. Adv Exp Med Biol 544:181–196

    Article  CAS  Google Scholar 

  • van Neerven S, Mey J (2007) RAR/RXR and PPAR/RXR signaling in spinal cord injury. PPAR Res. Article ID 29275

    Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  CAS  PubMed  Google Scholar 

  • Wang DD, Bordey A (2008) The astrocyte odyssey. Prog Neurobiol 86:342–367

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang JY, Wen LL, Huang YN, Chen YT, Ku MC (2006) Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr Pharmaceut Design 12:3521–3533

    Article  CAS  Google Scholar 

  • Wood PL (1998) Neuroinflammation: mechanisms and management. Humana Press, Totowa

    Google Scholar 

  • Wu D, Meydani SN (1998) n-3 polyunsaturated fatty acids and immune function. Proc Nutr Soc 57:503–509

    Article  CAS  PubMed  Google Scholar 

  • Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, Achong MK (1998) IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest 101:311–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ (2004) Flavonoid permeability across an in situ model of the blood–brain barrier. Free Radic Biol Med 36:592–604

    Article  CAS  PubMed  Google Scholar 

  • Yu GL, Wei EQ, Zhang SH, Xu HM, Chu LS, Zhang WP, Zhang Q, Chen Z, Mei RH, Zhao MH (2005) Montelukast, a cysteinyl leukotriene receptor-1 antagonist, dose- and time-dependently protects against focal cerebral ischemia in mice. Pharmacology 73:31–40

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Rivest S (2001) Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. J Neurochem 76:855–864

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, O’Connor T, Vassar R (2011) The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation 8:150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Y, Fang SH, Ye YL, Chu LS, Zhang WP, Wang ML, Wei EQ (2006) Caffeic acid ameliorates early and delayed brain injuries after focal cerebral ischemia in rats. Acta Pharmacol Sin 27:1103–1110

    Article  CAS  PubMed  Google Scholar 

  • Zoppo GJ, Hallenbeck JM (2000) Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 98:73–81

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farooqui, A. (2014). Biochemical Aspects of Neuroinflammation. In: Inflammation and Oxidative Stress in Neurological Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-04111-7_2

Download citation

Publish with us

Policies and ethics