Skip to main content

Introduction

  • Chapter
  • First Online:
Climate Time Series Analysis

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 51))

Abstract

“Weather is important but hard to predict”—laypeople and scientists alike will agree. The complexity of that system limits the knowledge about it and therefore its predictability even over a few days. It is complex because many variables within the Earth’s atmosphere, such as temperature, barometric pressure, wind velocity, humidity, clouds and precipitation, are interacting, and they do so nonlinearly. Extending the view to longer timescales, that is, the climate system in its original sense (the World Meteorological Organization defines a timescale boundary between weather and climate of 30 years), and also to larger spatial and further processual scales considered to influence climate (Earth’s surface, cryosphere, Sun, etc.) does not reduce complexity. This book loosely adopts the term “climate” to refer to this extended view, which shall also include “palaeoclimate” as the climate within the geological past.

Man observes nature and climate to learn, or extract information, and to predict. Since the climate system is complex and not all variables can be observed at arbitrary spatial and temporal range and resolution, our knowledge is, and shall be, restricted and uncertainty is introduced. In such a situation, we need the statistical language to acquire quantitative information. For that, we take the axiomatic approach by assuming that to an uncertain event (“it rains tomorrow” or “before 20,000 years the tropics were more than 5 C colder than at present”) a probability (real number between 0 and 1) can be assigned (Kolmogoroff, Ergeb. Math. Grenzgeb. 2(3):195–262, 1933). Statistics then deciphers/infers events and probabilities from data.

Superiority of quantitative methods over qualitative

Karl Popper

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarbanel HDI, Brown R, Sidorowich JJ, Tsimring LS (1993) The analysis of observed chaotic data in physical systems. Reviews of Modern Physics 65(4): 1331–1392

    Google Scholar 

  • Agrinier P, Gallet Y, Lewin E (1999) On the age calibration of the geomagnetic polarity timescale. Geophysical Journal International 137(1): 81–90

    Google Scholar 

  • Aitchison J, Brown JAC (1957) The Lognormal Distribution. Cambridge University Press, Cambridge, 176pp

    Google Scholar 

  • Allen MR, Smith LA (1994) Investigating the origins and significance of low-frequency modes of climate variability. Geophysical Research Letters 21(10): 883–886

    Google Scholar 

  • Anderson TW (1971) The Statistical Analysis of Time Series. Wiley, New York, 704pp

    Google Scholar 

  • Appleby PG, Oldfield F (1992) Application of lead-210 to sedimentation studies. In: Ivanovich M, Harmon RS (Eds) Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences, second edition. Clarendon Press, Oxford, pp 731–778

    Google Scholar 

  • Baker A, Smart PL, Edwards RL, Richards DA (1993) Annual growth banding in a cave stalagmite. Nature 364(6437): 518–520

    Google Scholar 

  • Basseville M, Nikiforov IV (1993) Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Englewood Cliffs, NJ, 447pp

    Google Scholar 

  • Beer J, Baumgartner S, Dittrich-Hannen B, Hauenstein J, Kubik P, Lukasczyk C, Mende W, Stellmacher R, Suter M (1994) Solar variability traced by cosmogenic isotopes. In: Pap JM, Fröhlich C, Hudson HS, Solanki SK (Eds) The Sun as a Variable Star: Solar and Stellar Irradiance Variations. Cambridge University Press, Cambridge, pp 291–300

    Google Scholar 

  • Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10(4): 297–317

    Google Scholar 

  • Berggren WA, Hilgen FJ, Langereis CG, Kent DV, Obradovich JD, Raffi I, Raymo ME, Shackleton NJ (1995a) Late Neogene chronology: New perspectives in high-resolution stratigraphy. Geological Society of America Bulletin 107(11): 1272–1287

    Google Scholar 

  • Berggren WA, Kent DV, Swisher III CC, Aubry M-P (1995b) A revised Cenozoic geochronology and chronostratigraphy. In: Berggren WA, Kent DV, Aubry M-P, Hardenbol J (Eds) Geochronology, Time Scales and Global Stratigraphic Correlation. Society for Sedimentary Geology, Tulsa, OK, pp 129–212. [SEPM Special Publication No. 54]

    Google Scholar 

  • Bernardo JM, Bayarri MJ, Berger JO, Dawid AP, Heckerman D, Smith AFM, West M (Eds) (2003) Bayesian Statistics 7: Proceedings of the Seventh Valencia International Meeting. Clarendon Press, Oxford, 750pp

    Google Scholar 

  • Bernardo JM, Smith AFM (1994) Bayesian theory. Wiley, Chichester, 586pp

    Google Scholar 

  • Besonen MR (2006) A 1,000 year high-resolution hurricane history for the Boston area based on the varved sedimentary record from the Lower Mystic Lake (Medford/Arlington, MA). Ph.D. Dissertation. University of Massachusetts at Amherst, Amherst, MA, 297pp

    Google Scholar 

  • Besonen MR, Bradley RS, Mudelsee M, Abbott MB, Francus P (2008) A 1,000-year, annually-resolved record of hurricane activity from Boston, Massachusetts. Geophysical Research Letters 35(14): L14705. [doi:10.1029/2008GL033950]

    Google Scholar 

  • Bigler M, Wagenbach D, Fischer H, Kipfstuhl J, Miller H, Sommer S, Stauffer B (2002) Sulphate record from a northeast Greenland ice core over the last 1200 years based on continuous flow analysis. Annals of Glaciology 35(1): 250–256

    Google Scholar 

  • Blaauw M, Christen JA (2005) Radiocarbon peat chronologies and environmental change. Applied Statistics 54(4): 805–816

    Google Scholar 

  • Bourdon B, Henderson GM, Lundstrom CC, Turner SP (Eds) (2003) Uranium-series Geochemistry. Mineralogical Society of America, Washington, DC, 656pp

    Google Scholar 

  • Box GEP, Jenkins GM, Reinsel GC (1994) Time Series Analysis: Forecasting and Control. Third edition. Prentice-Hall, Englewood Cliffs, NJ, 598pp

    Google Scholar 

  • Bradley RS (1999) Paleoclimatology: Reconstructing Climates of the Quaternary. Second edition. Academic Press, San Diego, 610pp

    Google Scholar 

  • Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Climatic Change 70(3): 363–430

    Google Scholar 

  • Brockwell PJ, Davis RA (1996) Introduction to Time Series and Forecasting. Springer, New York, 420pp

    Google Scholar 

  • Broecker WS, Peng T-H (1982) Tracers in the Sea. Eldigio Press, New York, 690pp

    Google Scholar 

  • Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20(2–3): 217–236

    Google Scholar 

  • Brückner E (1890) Klimaschwankungen seit 1700 nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit. Geographische Abhandlungen 4(2): 153–484

    Google Scholar 

  • Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner K-U, Wanner H, Luterbacher J, Esper J (2011) 2500 years of European climate variability and human susceptibility. Science 331(6017): 578–582

    Google Scholar 

  • Burns SJ, Fleitmann D, Mudelsee M, Neff U, Matter A, Mangini A (2002) A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from south Oman. Journal of Geophysical Research 107(D20): 4434. [doi:10.1029/2001JD001281]

    Google Scholar 

  • Cande SC, Kent DV (1992) A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic. Journal of Geophysical Research 97(B10): 13917–13951

    Google Scholar 

  • Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research 100(B4): 6093–6095

    Google Scholar 

  • Casella G (Ed) (2003) Silver Anniversary of the Bootstrap, volume 18(2) of Statistical Science. [Special issue]

    Google Scholar 

  • Champkin J (2010) Bradley Efron. Significance 7(4): 178–181

    Google Scholar 

  • Chan K-S, Tong H (2001) Chaos: A Statistical Perspective. Springer, New York, 300pp

    Google Scholar 

  • Cini Castagnoli G, Provenzale A (Eds) (1997) Past and Present Variability of the Solar–Terrestrial System: Measurement, Data Analysis and Theoretical Models. Società Italiana di Fisica, Bologna, 491pp

    Google Scholar 

  • Cowpertwait PSP, Metcalfe AV (2009) Introductory Time Series with R. Springer, Dordrecht, 254pp

    Google Scholar 

  • Cronin TM (2010) Paleoclimates: Understanding Climate Change Past and Present. Columbia University Press, New York, 441pp

    Google Scholar 

  • Crowley TJ, North GR (1991) Paleoclimatology. Oxford University Press, New York, 339pp

    Google Scholar 

  • Crutzen PJ (2002) Geology of mankind. Nature 415(6867): 23

    Google Scholar 

  • Crutzen PJ, Steffen W (2003) How long have we been in the Anthropocene era? Climatic Change 61(3): 251–257

    Google Scholar 

  • Dalfes HN, Schneider SH, Thompson SL (1984) Effects of bioturbation on climatic spectra inferred from deep sea cores. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (Eds) Milankovitch and Climate, volume 1. D. Reidel, Dordrecht, pp 481–492

    Google Scholar 

  • Dalrymple GB, Lanphere MA (1969) Potassium–Argon Dating. Freeman, San Francisco, 258pp

    Google Scholar 

  • Dansgaard W, Oeschger H (1989) Past environmental long-term records from the Arctic. In: Oeschger H, Langway Jr CC (Eds) The Environmental Record in Glaciers and Ice Sheets. Wiley, Chichester, pp 287–317

    Google Scholar 

  • Daoxian Y, Cheng Z (Eds) (2002) Karst Processes and the Carbon Cycle. Geological Publishing House, Beijing, 220pp

    Google Scholar 

  • Davis JC (1986) Statistics and Data Analysis in Geology. Second edition. Wiley, New York, 646pp

    Google Scholar 

  • Davison AC (2003) Statistical models. Cambridge University Press, Cambridge, 726pp

    Google Scholar 

  • Deep Sea Drilling Project (Ed) (1969–1986) Initial Reports of the Deep Sea Drilling Project, volume 1–96. U.S. Govt. Printing Office, Washington, DC

    Google Scholar 

  • Dempster AP (2010) Notes on fundamental approaches to climate prediction. Satellite Workshop on “Probabilistic Climate Prediction”, University of Exeter, 20 to 23 September 2010. [Preprint is available for download at the following Internet site: http://www.newton.ac.uk/programmes/CLP/seminars/2010092209309.pdf (9 November 2013)]

  • Diggle PJ (1990) Time Series: A Biostatistical Introduction. Clarendon Press, Oxford, 257pp

    Google Scholar 

  • Diks C (1999) Nonlinear Time Series Analysis: Methods and Applications. World Scientific, Singapore, 209pp

    Google Scholar 

  • Donner RV, Barbosa SM (Eds) (2008) Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics and Solar–Terrestrial Physics. Springer, Berlin, 390pp

    Google Scholar 

  • Douglass AE (1919) Climatic Cycles and Tree-Growth: A Study of the Annual Rings of Trees in Relation to Climate and Solar Activity, volume 1. Carnegie Institution of Washington, Washington, DC, 127pp

    Google Scholar 

  • Douglass AE (1928) Climatic Cycles and Tree-Growth: A Study of the Annual Rings of Trees in Relation to Climate and Solar Activity, volume 2. Carnegie Institution of Washington, Washington, DC, 166pp

    Google Scholar 

  • Douglass AE (1936) Climatic Cycles and Tree Growth: A Study of Cycles, volume 3. Carnegie Institution of Washington, Washington, DC, 171pp

    Google Scholar 

  • Eckmann J-P, Ruelle D (1992) Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems. Physica D 56(2–3): 185–187

    Google Scholar 

  • Efron B (1979) Bootstrap methods: Another look at the jackknife. The Annals of Statistics 7(1): 1–26

    Google Scholar 

  • Einstein A (1949) Autobiographisches—Autobiographical notes. In: Schilpp PA (Ed) Albert Einstein: Philosopher–Scientist. Library of Living Philosophers, Evanston, IL, pp 1–95

    Google Scholar 

  • Emiliani C (1955) Pleistocene temperatures. Journal of Geology 63(6): 538–578

    Google Scholar 

  • Fairchild IJ, Baker A (2012) Speleothem Science: From Process to Past Environments. Wiley-Blackwell, Chichester, 432pp

    Google Scholar 

  • Fairchild IJ, Frisia S, Borsato A, Tooth AF (2007) Speleothems. In: Nash DJ, McLaren SJ (Eds) Geochemical Sediments and Landscapes. Blackwell, Malden, MA, pp 200–245

    Google Scholar 

  • Feynman RP (1974) Cargo Cult Science: Some remarks on science, pseudoscience, and learning how to not fool yourself. Caltech’s 1974 commencement address. Engineering and Science 37(7): 10–13

    Google Scholar 

  • Fine TL (1983) Foundations of probability. In: Kotz S, Johnson NL, Read CB (Eds) Encyclopedia of Statistical Sciences, volume 3. Wiley, New York, pp 175–184

    Google Scholar 

  • Fleitmann D (2001) Annual to millennial Indian Ocean monsoon variability recorded in Holocene and Pleistocene stalagmites from Oman. Ph.D. Dissertation. University of Bern, Bern, 236pp

    Google Scholar 

  • Fleitmann D, Burns SJ, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary AA, Buettner A, Hippler D, Matter A (2007a) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26(1–2): 170–188

    Google Scholar 

  • Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300(5626): 1737–1739

    Google Scholar 

  • Fleitmann D, Burns SJ, Neff U, Mudelsee M, Mangini A, Matter A (2004) Paleoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from southern Oman. Quaternary Science Reviews 23(7–8): 935–945

    Google Scholar 

  • Fligge M, Solanki SK, Beer J (1999) Determination of solar cycle length variations using the continuous wavelet transform. Astronomy and Astrophysics 346(1): 313–321

    Google Scholar 

  • Geyh MA, Schleicher H (1990) Absolute Age Determination: Physical and Chemical Dating Methods and Their Application. Springer, Berlin, 503pp

    Google Scholar 

  • Gillieson D (1996) Caves: Processes, Development and Management. Blackwell, Oxford, 324pp

    Google Scholar 

  • Glaser R (2001) Klimageschichte Mitteleuropas. Wissenschaftliche Buchgesellschaft, Darmstadt, 227pp

    Google Scholar 

  • Glaser R, Riemann D, Schönbein J, Barriendos M, Brázdil R, Bertolin C, Camuffo D, Deutsch M, Dobrovolný P, van Engelen A, Enzi S, Halíčková M, Koenig SJ, Kotyza O, Limanówka D, Macková J, Sghedoni M, Martin B, Himmelsbach I (2010) The variability of European floods since AD 1500. Climatic Change 101(1–2): 235–256

    Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16(2–3): 147–168

    Google Scholar 

  • Goreau TJ (1980) Frequency sensitivity of the deep-sea climatic record. Nature 287(5783): 620–622

    Google Scholar 

  • Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: Theory and application. Quaternary Science Reviews 20(14): 1475–1560

    Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG (Eds) (2004) A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 589pp

    Google Scholar 

  • Grassberger P (1986) Do climatic attractors exist? Nature 323(6089): 609–612

    Google Scholar 

  • Grün R (1989) Die ESR-Altersbestimmungsmethode. Springer, Berlin, 132pp

    Google Scholar 

  • Haldane JBS (1942) Moments of the distributions of powers and products of normal variates. Biometrika 32(3–4): 226–242

    Google Scholar 

  • Hammer C, Mayewski PA, Peel D, Stuiver M (Eds) (1997) Greenland Summit Ice Cores GISP2/GRIP, volume 102(C12) of Journal of Geophysical Research. [Special issue]

    Google Scholar 

  • Hand DJ (2008) Statistics: A Very Short Introduction. Oxford University Press, Oxford, 124pp

    Google Scholar 

  • Hann J (1901) Lehrbuch der Meteorologie. Tauchnitz, Leipzig, 805pp

    Google Scholar 

  • Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology 27(9): 1119–1152

    Google Scholar 

  • Hansen AR, Sutera A (1986) On the probability density distribution of planetary-scale atmospheric wave amplitude. Journal of the Atmospheric Sciences 43(24): 3250–3265

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194(4270): 1121–1132

    Google Scholar 

  • Heisenberg W (1969) Der Teil und das Ganze. Piper, Munich, 334pp

    Google Scholar 

  • Henderson GM (2002) New oceanic proxies for paleoclimate. Earth and Planetary Science Letters 203(1): 1–13

    Google Scholar 

  • Holton JR, Curry JA, Pyle JA (Eds) (2003) Encyclopedia of Atmospheric Sciences, volume 1–6. Academic Press, Amsterdam, 2780pp

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (Eds) (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 881pp

    Google Scholar 

  • Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ 18O record. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (Eds) Milankovitch and Climate, volume 1. D. Reidel, Dordrecht, pp 269–305

    Google Scholar 

  • Ivanovich M, Harmon RS (Eds) (1992) Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences. Second edition. Clarendon Press, Oxford, 910pp

    Google Scholar 

  • Johns TC, Carnell RE, Crossley JF, Gregory JM, Mitchell JFB, Senior CA, Tett SFB, Wood RA (1997) The second Hadley Centre coupled ocean–atmosphere GCM: Model description, spinup and validation. Climate Dynamics 13(2): 103–134

    Google Scholar 

  • Johnsen SJ, Dahl-Jensen D, Gundestrup N, Steffensen JP, Clausen HB, Miller H, Masson-Delmotte V, Sveinbjörnsdottir AE, White J (2001) Qxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16(4): 299–307

    Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous Univariate Distributions, volume 1. Second edition. Wiley, New York, 756pp

    Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1995) Continuous Univariate Distributions, volume 2. Second edition. Wiley, New York, 719pp

    Google Scholar 

  • Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. Journal of Climate 16(2): 206–223

    Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317(5839): 793–796

    Google Scholar 

  • Kandel ER (2006) In Search of Memory: The Emergence of a New Science of Mind. W. W. Norton, New York, 510pp

    Google Scholar 

  • Kant I (1781) Critik der reinen Vernunft. Hartknoch, Riga, 856pp

    Google Scholar 

  • Kantz H, Schreiber T (1997) Nonlinear time series analysis. Cambridge University Press, Cambridge, 304pp

    Google Scholar 

  • Kennett JP (1982) Marine Geology. Prentice-Hall, Englewood Cliffs, NJ, 813pp

    Google Scholar 

  • Köppen W (1923) Die Klimate der Erde: Grundriss der Klimakunde. de Gruyter, Berlin, 369pp

    Google Scholar 

  • Kotz S, Balakrishnan N, Johnson NL (2000) Continuous Multivariate Distributions, volume 1. Second edition. Wiley, New York, 722pp

    Google Scholar 

  • Kotz S, Johnson NL, Read CB (Eds) (1982a) Encyclopedia of Statistical Sciences, volume 1. Wiley, New York, 480pp

    Google Scholar 

  • Kotz S, Johnson NL, Read CB (Eds) (1982b) Encyclopedia of Statistical Sciences, volume 2. Wiley, New York, 613pp

    Google Scholar 

  • Kotz S, Johnson NL, Read CB (Eds) (1983a) Encyclopedia of Statistical Sciences, volume 3. Wiley, New York, 722pp

    Google Scholar 

  • Kotz S, Johnson NL, Read CB (Eds) (1983b) Encyclopedia of Statistical Sciences, volume 4. Wiley, New York, 657pp

    Google Scholar 

  • Kotz S, Johnson NL, Read CB (Eds) (1985a) Encyclopedia of Statistical Sciences, volume 5. Wiley, New York, 741pp

    Google Scholar 

  • Kotz S, Johnson NL, Read CB (Eds) (1985b) Encyclopedia of Statistical Sciences, volume 6. Wiley, New York, 758pp

    Google Scholar 

  • Kotz S, Johnson NL, Read CB (Eds) (1986) Encyclopedia of Statistical Sciences, volume 7. Wiley, New York, 714pp

    Google Scholar 

  • Kotz S, Johnson NL, Read CB (Eds) (1988a) Encyclopedia of Statistical Sciences, volume 8. Wiley, New York, 870pp

    Google Scholar 

  • Kotz S, Johnson NL, Read CB (Eds) (1988b) Encyclopedia of Statistical Sciences, volume 9. Wiley, New York, 762pp

    Google Scholar 

  • Kotz S, Johnson NL, Read CB (Eds) (1989) Encyclopedia of Statistical Sciences, volume S. Wiley, New York, 283pp

    Google Scholar 

  • Kotz S, Read CB, Banks DL (Eds) (1997) Encyclopedia of Statistical Sciences, volume U1. Wiley, New York, 568pp

    Google Scholar 

  • Kotz S, Read CB, Banks DL (Eds) (1998) Encyclopedia of Statistical Sciences, volume U2. Wiley, New York, 745pp

    Google Scholar 

  • Kotz S, Read CB, Banks DL (Eds) (1999) Encyclopedia of Statistical Sciences, volume U3. Wiley, New York, 898pp

    Google Scholar 

  • Kuhn TS (1970) The Structure of Scientific Revolutions. Second edition. University of Chicago Press, Chicago, 210pp

    Google Scholar 

  • Kürschner WM, van der Burgh J, Visscher H, Dilcher DL (1996) Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Marine Micropaleontology 27(1–4): 299–312

    Google Scholar 

  • Lakatos I, Musgrave A (Eds) (1970) Criticism and the Growth of Knowledge. Cambridge University Press, Cambridge, 282pp

    Google Scholar 

  • Lindley DV (1965) Introduction to Probability and Statistics. Cambridge University Press, Cambridge, 259pp

    Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20(1): PA1003. [doi:10.1029/2004PA001071]

    Google Scholar 

  • Livina VN, Lohmann G, Mudelsee M, Lenton TM (2013) Forecasting the underlying potential governing the time series of a dynamical system. Physica A 392(18): 3891–3902

    Google Scholar 

  • Lomnicki ZA (1967) On the distribution of products of random variables. Journal of the Royal Statistical Society, Series B 29(3): 513–524

    Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20(2): 130–141

    Google Scholar 

  • Lorenz EN (1991) Dimension of weather and climate attractors. Nature 353(6341): 241–244

    Google Scholar 

  • Maidment DR (Ed) (1993) Handbook of Hydrology. McGraw-Hill, New York, 1400pp

    Google Scholar 

  • Marquardt DW, Acuff SK (1982) Direct quadratic spectrum estimation from unequally spaced data. In: Anderson OD, Perryman MR (Eds) Applied Time Series Analysis. North-Holland, Amsterdam, pp 199–227

    Google Scholar 

  • Martin RJ (1998) Irregularly sampled signals: Theories and techniques for analysis. Ph.D. Dissertation. University College London, London, 158pp

    Google Scholar 

  • Matteucci G (1990) Analysis of the probability distribution of the late Pleistocene climatic record: Implications for model validation. Climate Dynamics 5(1): 35–52

    Google Scholar 

  • McAvaney BJ, Covey C, Joussaume S, Kattsov V, Kitoh A, Ogana W, Pitman AJ, Weaver AJ, Wood RA, Zhao Z-C (2001) Model evaluation. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (Eds) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 471–523

    Google Scholar 

  • McGuffie K, Henderson-Sellers A (1997) A Climate Modelling Primer. Second edition. Wiley, Chichester, 253pp

    Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. Second edition. Blackwell, Oxford, 216pp

    Google Scholar 

  • Mudelsee M (2005) A new, absolutely dated geomagnetic polarity timescale for the Late Pliocene to Early Pleistocene. In: Berger A, Ercegovac M, Mesinger F (Eds) Milutin Milankovitch Anniversary Symposium: Paleoclimate and the Earth Climate System. Serbian Academy of Sciences and Arts, Belgrade, pp 145–149

    Google Scholar 

  • Mudelsee M, Barabas M, Mangini A (1992) ESR dating of the Quaternary deep-sea sediment core RC17-177. Quaternary Science Reviews 11(1–2): 181–189

    Google Scholar 

  • Mudelsee M, Börngen M, Tetzlaff G, Grünewald U (2003) No upward trends in the occurrence of extreme floods in central Europe. Nature 425(6954): 166–169. [Corrigendum: Insert in Eq. (1) on the right-hand side a factor h −1 before the sum sign. Results in paper were obtained with correct formula.]

    Google Scholar 

  • Mudelsee M, Raymo ME (2005) Slow dynamics of the Northern Hemisphere Glaciation. Paleoceanography 20(4): PA4022. [doi:10.1029/2005PA001153]

    Google Scholar 

  • Mudelsee M, Stattegger K (1994) Plio-/Pleistocene climate modeling based on oxygen isotope time series from deep-sea sediment cores: The Grassberger–Procaccia algorithm and chaotic climate systems. Mathematical Geology 26(7): 799–815

    Google Scholar 

  • Mudelsee M, Stattegger K (1997) Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis. Geologische Rundschau 86(2): 499–511

    Google Scholar 

  • Negendank JFW, Zolitschka B (Eds) (1993) Paleolimnology of European Maar Lakes. Springer, Berlin, 513pp

    Google Scholar 

  • Neuendorf KKE, Mehl Jr JP, Jackson JA (2005) Glossary of Geology. Fifth edition. American Geological Institute, Alexandria, VA, 779pp

    Google Scholar 

  • Nicolis C, Nicolis G (1984) Is there a climatic attractor? Nature 311(5986): 529–532

    Google Scholar 

  • Nierenberg WA (Ed) (1992) Encyclopedia of Earth System Science, volume 1–4. Academic Press, San Diego, 2825pp

    Google Scholar 

  • North Greenland Ice Core Project members (2004) High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature 431(7005): 147–151

    Google Scholar 

  • Ocean Drilling Program (Ed) (1986–2004) Proceedings of the Ocean Drilling Program, Initial Reports, volume 101–210. Ocean Drilling Program, College Station, TX

    Google Scholar 

  • Ocean Drilling Program (Ed) (1988–2007) Proceedings of the Ocean Drilling Program, Scientific Results, volume 101–210. Ocean Drilling Program, College Station, TX

    Google Scholar 

  • Oeschger H, Langway Jr CC (Eds) (1989) The Environmental Record in Glaciers and Ice Sheets. Wiley, Chichester, 401pp

    Google Scholar 

  • Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Physical Review Letters 45(9): 712–716

    Google Scholar 

  • Palmer T, Williams P (Eds) (2010) Stochastic Physics and Climate Modelling. Cambridge University Press, Cambridge, 480pp

    Google Scholar 

  • Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theoretical and Applied Climatology 49(4): 217–224

    Google Scholar 

  • Parzen E (Ed) (1984) Time Series Analysis of Irregularly Observed Data. Springer, New York, 363pp

    Google Scholar 

  • Percival DB, Walden AT (2000) Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge, 594pp

    Google Scholar 

  • Pestiaux P, Berger A (1984) Impacts of deep-sea processes on paleoclimatic spectra. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (Eds) Milankovitch and Climate, volume 1. D. Reidel, Dordrecht, pp 493–510

    Google Scholar 

  • Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salinger J, Førland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998a) Homogeneity adjustments of insitu atmospheric climate data: A review. International Journal of Climatology 18(13): 1493–1517

    Google Scholar 

  • Peterson TC, Vose R, Schmoyer R, Razuvaëv V (1998b) Global Historical Climatology Network (GHCN) quality control of monthly temperature data. International Journal of Climatology 18(11): 1169–1179

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola J-M, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399(6735): 429–436

    Google Scholar 

  • Pfister C (1999) Wetternachhersage. Paul Haupt, Bern, 304pp

    Google Scholar 

  • Polanyi M (1958) Personal Knowledge: Towards a Post-Critical Philosophy. University of Chicago Press, Chicago, 428pp

    Google Scholar 

  • Popper K (1935) Logik der Forschung: Zur Erkenntnistheorie der modernen Naturwissenschaft. Julius Springer, Wien, 248pp

    Google Scholar 

  • Preisendorfer RW (1988) Principal Component Analysis in Meteorology and Oceanography. Elsevier, Amsterdam, 425pp

    Google Scholar 

  • Prell WL, Imbrie J, Martinson DG, Morley JJ, Pisias NG, Shackleton NJ, Streeter HF (1986) Graphic correlation of oxygen isotope stratigraphy application to the late Quaternary. Paleoceanography 1(2): 137–162

    Google Scholar 

  • Priestley MB (1981) Spectral Analysis and Time Series. Academic Press, London, 890pp

    Google Scholar 

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 589–662

    Google Scholar 

  • Raynaud D, Jouzel J, Barnola JM, Chappellaz J, Delmas RJ, Lorius C (1993) The ice record of greenhouse gases. Science 259(5097): 926–934

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3): 1029–1058

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4): 1111–1150

    Google Scholar 

  • Röthlisberger R, Bigler M, Hutterli M, Sommer S, Stauffer B, Junghans HG, Wagenbach D (2000) Technique for continuous high-resolution analysis of trace substances in firn and ice cores. Environmental Science & Technology 34(2): 338–342

    Google Scholar 

  • Ruddiman WF, Raymo ME (2003) A methane-based time scale for Vostok ice. Quaternary Science Reviews 22(2–4): 141–155

    Google Scholar 

  • Ruelle D (1990) Deterministic chaos: The science and the fiction. Proceedings of the Royal Society of London, Series A 427(1873): 241–248

    Google Scholar 

  • Schiffelbein P (1984) Effect of benthic mixing on the information content of deep-sea stratigraphical signals. Nature 311(5987): 651–653

    Google Scholar 

  • Schiffelbein P (1985) Extracting the benthic mixing impulse response function: A constrained deconvolution technique. Marine Geology 64(3–4): 313–336

    Google Scholar 

  • Schweingruber FH (1988) Tree Rings: Basics and Applications of Dendrochronology. Kluwer, Dordrecht, 276pp

    Google Scholar 

  • Scott DW (1979) On optimal and data-based histograms. Biometrika 66(3): 605–610

    Google Scholar 

  • Seibold E, Berger WH (1993) The Sea Floor. Second edition. Springer, Berlin, 356pp

    Google Scholar 

  • Selley RC, Cocks LRM, Plimer IR (Eds) (2005) Encyclopedia of Geology, volume 1–5. Elsevier, Amsterdam, 3297pp

    Google Scholar 

  • Shackleton N (1967) Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215(5096): 15–17

    Google Scholar 

  • Shackleton NJ (2000) The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289(5486): 1897–1902

    Google Scholar 

  • Shackleton NJ, Crowhurst S, Hagelberg T, Pisias NG, Schneider DA (1995a) A new late Neogene time scale: Application to Leg 138 sites. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (Eds) Proc. ODP, Sci. Results, volume 138. Ocean Drilling Program, College Station, TX, pp 73–101

    Google Scholar 

  • Shackleton NJ, Fairbanks RG, Chiu T-c, Parrenin F (2004) Absolute calibration of the Greenland time scale: Implications for Antarctic time scales and for \(\Delta ^{14}\) C. Quaternary Science Reviews 23(14–15): 1513–1522

    Google Scholar 

  • Shackleton NJ, Hall MA (1984) Oxygen and carbon isotope stratigraphy of Deep Sea Drilling Project hole 552A: Plio–Pleistocene glacial history. In: Roberts DG, Schnitker D, Backman J, Baldauf JG, Desprairies A, Homrighausen R, Huddlestun P, Kaltenback AJ, Krumsiek KAO, Morton AC, Murray JW, Westberg-Smith J, Zimmerman HB (Eds) Init. Repts. DSDP, volume 81. U.S. Govt. Printing Office, Washington, DC, pp 599–609

    Google Scholar 

  • Shackleton NJ, Hall MA, Pate D (1995b) Pliocene stable isotope stratigraphy of Site 846. In: Pisias NG, Mayer LA, Janecek TR, Palmer-Julson A, van Andel TH (Eds) Proc. ODP, Sci. Results, volume 138. Ocean Drilling Program, College Station, TX, pp 337–355

    Google Scholar 

  • Shumway RH, Stoffer DS (2006) Time Series Analysis and Its Applications: With R Examples. Second edition. Springer, New York, 575pp

    Google Scholar 

  • Silverman BW (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall, London, 175pp

    Google Scholar 

  • Simonoff JS (1996) Smoothing Methods in Statistics. Springer, New York, 338pp

    Google Scholar 

  • Sokal A, Bricmont J (1998) Intellectual Impostures. Profile Books, London, 274pp

    Google Scholar 

  • Solanki SK, Usoskin IG, Kromer B, Schüssler M, Beer J (2004) Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431(7012): 1084–1087

    Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller Jr HL, Chen Z (Eds) (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996pp

    Google Scholar 

  • Spall JC (Ed) (1988) Bayesian Analysis of Time Series and Dynamic Models. Marcel Dekker, New York, 536pp

    Google Scholar 

  • Stanley SM (1989) Earth and life through time. Second edition. Freeman, New York, 689pp

    Google Scholar 

  • Steele JH, Thorpe SA, Turekian KK (Eds) (2001) Encyclopedia of Ocean Sciences, volume 1–6. Academic Press, San Diego, 3399pp

    Google Scholar 

  • Stott PA, Tett SFB, Jones GS, Allen MR, Mitchell JFB, Jenkins GJ (2000) External control of 20th century temperature by natural and anthropogenic forcings. Science 290(5499): 2133–2137

    Google Scholar 

  • Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, van der Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3): 1041–1083

    Google Scholar 

  • Taylor RE (1987) Radiocarbon Dating: An Archaeological Perspective. Academic Press, Orlando, FL, 212pp

    Google Scholar 

  • Thomson J, Cook GT, Anderson R, MacKenzie AB, Harkness DD, McCave IN (1995) Radiocarbon age offsets in different-sized carbonate components of deep-sea sediments. Radiocarbon 37(2): 91–101

    Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79(1): 61–78

    Google Scholar 

  • Trauth MH (1998) TURBO: A dynamic-probabilistic simulation to study the effects of bioturbation on paleoceanographic time series. Computers and Geosciences 24(5): 433–441

    Google Scholar 

  • Traverse A (2007) Paleopalynology. Second edition. Springer, Dordrecht, 813pp

    Google Scholar 

  • Tsonis AA, Elsner JB (Eds) (2007) Nonlinear Dynamics in Geosciences. Springer, New York, 604pp

    Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical Analysis in Climate Research. Cambridge University Press, Cambridge, 484pp

    Google Scholar 

  • von Weizsäcker CF (1985) Aufbau der Physik. Deutscher Taschenbuch Verlag, Munich, 662pp

    Google Scholar 

  • Walker M (2005) Quaternary Dating Methods. Wiley, Chichester, 286pp

    Google Scholar 

  • Wasserman L (2004) All of Statistics: A Concise Course in Statistical Inference. Springer, New York, 442pp

    Google Scholar 

  • Wasserman L (2006) All of Nonparametric Statistics. Springer, New York, 268pp

    Google Scholar 

  • Weikinn C (1958) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 1 (Zeitwende–1500). Akademie-Verlag, Berlin, 531pp

    Google Scholar 

  • Weikinn C (1960) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 2 (1501–1600). Akademie-Verlag, Berlin, 486pp

    Google Scholar 

  • Weikinn C (1961) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 3 (1601–1700). Akademie-Verlag, Berlin, 586pp

    Google Scholar 

  • Weikinn C (1963) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahre 1850: Hydrographie, Teil 4 (1701–1750). Akademie-Verlag, Berlin, 381pp

    Google Scholar 

  • Weikinn C (2000) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahr 1850: Hydrographie, Teil 5 (1751–1800). Gebrüder Borntraeger, Berlin, 674pp. [Börngen M, Tetzlaff G (Eds)]

    Google Scholar 

  • Weikinn C (2002) Quellentexte zur Witterungsgeschichte Europas von der Zeitwende bis zum Jahr 1850: Hydrographie, Teil 6 (1801–1850). Gebrüder Borntraeger, Berlin, 728pp. [Börngen M, Tetzlaff G (Eds)]

    Google Scholar 

  • Wilks DS (1995) Statistical Methods in the Atmospheric Sciences. Academic Press, San Diego, 467pp

    Google Scholar 

  • Wilks DS (2006) Statistical Methods in the Atmospheric Sciences. Second edition. Elsevier, Amsterdam, 627pp

    Google Scholar 

  • Wu P, Wood R, Stott P (2005) Human influence on increasing Arctic river discharges. Geophysical Research Letters 32(2): L02703. [doi:10.1029/2004GL021570]

    Google Scholar 

  • Zalasiewicz J, Williams M, Smith A, Barry TL, Coe AL, Brown PR, Brenchley P, Cantrill D, Gale A, Gibbard P, Gregory FJ, Hounslow MW, Kerr AC, Pearson P, Knox R, Powell J, Waters C, Marshall J, Oates M, Rawson P, Stone P (2008) Are we now living in the Anthropocene? GSA Today 18(2): 4–8

    Google Scholar 

  • Zolitschka B (Ed) (1999) High-resolution records from European lakes, volume 18(7) of Quaternary Science Reviews. [Special issue]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mudelsee, M. (2014). Introduction. In: Climate Time Series Analysis. Atmospheric and Oceanographic Sciences Library, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-04450-7_1

Download citation

Publish with us

Policies and ethics