Skip to main content

SAH-Induced MMP Activation and K V Current Suppression is Mediated Via Both ROS-Dependent and ROS-Independent Mechanisms

  • Chapter
  • First Online:
Neurovascular Events After Subarachnoid Hemorrhage

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 120))

Abstract

Voltage-gated potassium (K V) channels regulate cerebral artery tone and have been implicated in subarachnoid hemorrhage (SAH)-induced pathologies. Here, we examined whether matrix metalloprotease (MMP) activation contributes to SAH-induced K V current suppression and cerebral artery constriction via activation of epidermal growth factor receptors (EGFRs). Using patch clamp electrophysiology, we observed that K V currents were selectively decreased in cerebral artery myocytes isolated from SAH model rabbits. Consistent with involvement of enhanced MMP and EGFR activity in SAH-induced K V current suppression, we found that: (1) oxyhemoglobin (OxyHb) and/or the exogenous EGFR ligand, heparin-binding EGF-like growth factor (HB-EGF), failed to induce further K V current suppression after SAH and (2) gelatin zymography detected significantly higher MMP-2 activity after SAH. The removal of reactive oxygen species (ROS) by combined treatment with superoxide dismutase (SOD) and catalase partially inhibited OxyHb-induced K V current suppression. However, these agents had little effect on OxyHb-induced MMP-2 activation. Interestingly, in the presence of a broad-spectrum MMP inhibitor (GM6001), OxyHb failed to cause K V current suppression. These data suggest that OxyHb suppresses K V currents through both ROS-dependent and ROS-independent pathways involving MMP activation. The ROS-independent pathway involves activation of MMP-2, whereas the ROS-dependent pathway involves activation of a second unidentified MMP or ADAM (a disintegrin and metalloprotease domain).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albarwani S, Nemetz LT, Madden JA, Tobin AA, England SK, Pratt PF, Rusch NJ (2003) Voltage-gated K+ channels in rat small cerebral arteries: molecular identity of the functional channels. J Physiol 551:751–763

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Ali MA, Kandasamy AD, Fan X, Schulz R (2013) Hydrogen peroxide-induced necrotic cell death in cardiomyocytes is independent of matrix metalloproteinase-2. Toxicol In Vitro 27:1686–1692

    Article  PubMed  CAS  Google Scholar 

  3. Amberg GC, Santana LF (2006) KV2 channels oppose myogenic constriction of rat cerebral arteries. Am J Physiol Cell Physiol 291:C348–C356

    Article  PubMed  CAS  Google Scholar 

  4. Chen TT, Luykenaar KD, Walsh EJ, Walsh MP, Cole WC (2006) Key role of KV1 channels in vasoregulation. Circ Res 99:53–60

    Article  PubMed  CAS  Google Scholar 

  5. Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17:439–447

    Article  PubMed  CAS  Google Scholar 

  6. Harder DR, Dernbach P, Waters A (1987) Possible cellular mechanism for cerebral vasospasm after experimental subarachnoid hemorrhage in the dog. J Clin Invest 80:875–880

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Ishiguro M, Morielli AD, Zvarova K, Tranmer BI, Penar PL, Wellman GC (2006) Oxyhemoglobin-induced suppression of voltage-dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity. Circ Res 99:1252–1260

    Article  PubMed  CAS  Google Scholar 

  8. Ishiguro M, Puryear CB, Bisson E, Saundry CM, Nathan DJ, Russell SR, Tranmer BI, Wellman GC (2002) Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage. Am J Physiol Heart Circ Physiol 283:H2217–H2225

    PubMed  CAS  Google Scholar 

  9. Koide M, Bonev AD, Nelson MT, Wellman GC (2012) Inversion of neurovascular coupling by subarachnoid blood depends on large-conductance Ca2+-activated K+ (BK) channels. Proc Natl Acad Sci U S A 109:E1387–E1395

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Koide M, Nystoriak MA, Krishnamoorthy G, O’Connor KP, Bonev AD, Nelson MT, Wellman GC (2011) Reduced Ca2+ spark activity after subarachnoid hemorrhage disables BK channel control of cerebral artery tone. J Cereb Blood Flow Metab 31:3–16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Koide M, Penar PL, Tranmer BI, Wellman GC (2007) Heparin-binding EGF-like growth factor mediates oxyhemoglobin-induced suppression of voltage-dependent potassium channels in rabbit cerebral artery myocytes. Am J Physiol Heart Circ Physiol 293:H1750–H1759

    Article  PubMed  CAS  Google Scholar 

  12. Lucchesi PA, Sabri A, Belmadani S, Matrougui K (2004) Involvement of metalloproteinases 2/9 in epidermal growth factor receptor transactivation in pressure-induced myogenic tone in mouse mesenteric resistance arteries. Circulation 110:3587–3593

    Article  PubMed  CAS  Google Scholar 

  13. Martinez-Lemus LA, Zhao G, Galinanes EL, Boone M (2011) Inward remodeling of resistance arteries requires reactive oxygen species-dependent activation of matrix metalloproteinases. Am J Physiol Heart Circ Physiol 300:H2005–H2015

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Misra HP, Fridovich I (1972) The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 247:6960–6962

    PubMed  CAS  Google Scholar 

  15. Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259:C3–C18

    PubMed  CAS  Google Scholar 

  16. Nystoriak MA, O’Connor KP, Sonkusare SK, Brayden JE, Nelson MT, Wellman GC (2011) Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. Am J Physiol Heart Circ Physiol 300:H803–H812

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, Kasuya H, Wellman G, Keller E, Zauner A, Dorsch N, Clark J, Ono S, Kiris T, Leroux P, Zhang JH (2009) Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 31:151–158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Sehba FA, Bederson JB (2006) Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res 28:381–398

    Article  PubMed  CAS  Google Scholar 

  19. Siwik DA, Pagano PJ, Colucci WS (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 280:C53–C60

    PubMed  CAS  Google Scholar 

  20. Sobey CG, Faraci FM (1998) Subarachnoid haemorrhage: what happens to the cerebral arteries? Clin Exp Pharmacol Physiol 25:867–876

    Article  PubMed  CAS  Google Scholar 

  21. Steele JA, Stockbridge N, Maljkovic G, Weir B (1991) Free radicals mediate actions of oxyhemoglobin on cerebrovascular smooth muscle cells. Circ Res 68:416–423

    Article  PubMed  CAS  Google Scholar 

  22. Wellman GC (2006) Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage. Neurol Res 28:690–702

    Article  PubMed  CAS  Google Scholar 

  23. Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL (2000) Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation. Circ Res 87:160–166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Totman Trust for Medical Research, the Peter Martin Brain Aneurysm Endowment, the National Institutes of Health (NIH) (P01 HL095488, R01 HL078983, and R01 HL078983-05S1) and the American Heart Association (0725837T). The authors acknowledge the use and assistance of the University of Vermont Neuroscience COBRE molecular biology core facility.

Conflict of Interest Statement

 We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayo Koide PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koide, M., Wellman, G.C. (2015). SAH-Induced MMP Activation and K V Current Suppression is Mediated Via Both ROS-Dependent and ROS-Independent Mechanisms. In: Fandino, J., Marbacher, S., Fathi, AR., Muroi, C., Keller, E. (eds) Neurovascular Events After Subarachnoid Hemorrhage. Acta Neurochirurgica Supplement, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-319-04981-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04981-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04980-9

  • Online ISBN: 978-3-319-04981-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics