Skip to main content

The Population Balance Equation

  • Chapter
  • First Online:
Chemical Reactor Modeling

Abstract

The chemical engineering community began the first efforts that can be associated with the concepts of the population balance in the early 1960s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Smoluchowski [121], Williams and Loyalka [136], Friedlander [27] and Kolev [48] (p. 170), among others, considered very small particles and interpreted the cross sectional area in a slightly different way representing an extrapolation of the concepts in kinetic theory of gases. In these analyzes the traveling particle is treated as a point in space without cross sectional area, thus the effective area becomes equal to the cross sectional area of the stagnant particle. This alternative cross sectional area approximation becomes: \(\sigma '_{A_T} = \frac{1}{4} \pi d^2\).

  2. 2.

    The collision tube concept is familiar from the kinetic theory of gases. Consider a particle in such a cube, moving with a relative speed with respect to the other particles which are fixed. The particle in the tube sweeps a volume per unit time (\(\mathrm{m}^3 \mathrm{s}^{-1}\)). Venneker [132] named the rate of volume swept by the particle for the effective swept volume rate. Henceforth this name is used referring to this quantity.

  3. 3.

    Note that the parameter value used by Luo [79] is a factor of 4 larger than the one in (9.17). The reason for this deviation is that Luo used a different definition of the effective total cross-sectional area \(\sigma _{A_T}\).

  4. 4.

    Luo and Svendsen [80] did not distinguish between the experimentally determined relation (9.32) and the Kolmogorov structure function (9.15). In their work the theoretical parameter value \(C\) was calculated as \(C=(3/5)\varGamma (1/3)C_k\approx (3/5)\times 2.6789 \times 1.5 = 2.41\). It follows that their mean droplet velocity estimate is \(\bar{v}_\text {drops} \approx (\frac{8 \overline{\delta v^2 (d)}}{3\pi })^{1/2} = \sqrt{8 \times C/(3\pi )} (\varepsilon d)^{1/3} =\sqrt{2.046}(\varepsilon d)^{1/3}\).

  5. 5.

    Politano et al. [98] adopted the kernel functionality of Luo and Svendsen but modified the definition of the effective collision cross-sectional area, \(\sigma _{A_T} = \frac{\pi }{4} \left( \frac{d_i + \lambda }{2}\right) ^2\), in accordance with other work in nuclear engineering (e.g., Kolev [48], p. 168).

  6. 6.

    Luo and Svendsen [80] did not distinguish between the value of the theoretical parameter \(C\) in the structure function relation (9.15) and the empirical parameter \(\beta = 2.0\) in the droplet rms velocity relation (9.32) when calculating the mean eddy velocity from (9.39). To reproduce the parameter value in the eddy number density relation used by Luo and Svendsen, the value of the \(\beta \) parameter is computed using the structure function relation (9.15) instead of the empirical relation (9.32). That is, they let \(\beta = \frac{8 C}{3\pi }\), and \(C=\frac{3}{5}\varGamma (1/3)C_k \approx \frac{3}{5}\times 2.6789\times 1.5=2.41\). The parameter in the eddy number density of eddies was thus approximated as: \(\frac{9 C_k}{C 2^{5/3} \pi ^{2/3}} = 0.822\).

  7. 7.

    Luo and Svendsen used the parameter values \(C=\frac{3}{5}\varGamma (1/3)C_k = 2.41\), and \((8C/3\pi )\approx 2.045\), hence their parameter value in (9.45) becomes \(\frac{\pi }{4} (0.822) \sqrt{2.045} \approx 0.923\).

  8. 8.

    Notice that this efficiency function is not necessary volume or mass conservative as Luo and Svendsen [80] did consider the breakage efficiency function being equal to the kinetic energy distribution function. It would probably be better to consider the breakage distribution function purely proportional to the empirical kinetic energy distribution function, and determine the probability constant by requiring bubble volume or mass conservation within the breakage process.

  9. 9.

    Luo [79] employed (9.16) with \(C\approx 2.41\) and obtained \(\bar{e}(d_i,\lambda ) = \rho _c \frac{\pi }{6} \lambda ^3 \frac{\bar{v}^2_\lambda }{2} = \rho _c \frac{C \pi }{12} \lambda ^{11/3} \varepsilon ^{2/3} = \rho _c \frac{C\pi }{12} \xi ^{11/3} d_i^{11/3} \varepsilon ^{2/3}\). Moreover, with this parameter value and bubble velocity estimate the critical energy ratio becomes \(\chi _{cr} \approx e_s (d_i,d_j)/\bar{e}(d_i,\lambda ) = 12C_f\sigma _I/(C \rho _c \varepsilon ^{2/3} d_i^{5/3} \xi ^{11/3})\).

  10. 10.

    Luo and Svendsen [80] employed the parameter value \((8C/3\pi )\approx 2.045\) instead, hence the parameter in (9.52) becomes \(0.923\).

  11. 11.

    A local space dependency of the \(P_B\)-function is retained as the integration is over a differential microscopic volume \(dV_{r'}\), thus the integrated \(P_B\)-function varies locally in space \(\mathbf {r}\) but the \(P_B\)-function does not differ over the microscopic differential volume \(dV_{r'}\) of the different particles.

  12. 12.

    A local space dependency of the \(\kappa \)-function is retained as the integration is over a differential microscopic volume \(dV_{r'}\), thus the \(\kappa \)-function varies locally in space \(\mathbf {r}\) but the \(\kappa \)-function does not differ over the microscopic differential volume \(dV_{r'}\) of the different particles.

References

  1. Angelidou C, Psimopoulos M, Jameson GJ (1979) Size distribution functions of dispersions. Chem Eng Sci 34(5):671–676

    Google Scholar 

  2. Azbel D (1981) Two-phase flows in chemical engineering. Cambridge Univerity Press, Cambride

    Google Scholar 

  3. Azbel D, Athanasios IL (1983) A mechanism of liquid entrainment. In: Cheremisinoff N (ed) Handbook of fluids in motion. Ann Arbor Science Publishers, Ann Arbor, p 473

    Google Scholar 

  4. Barrow JD (1981) Coagulation with fragmentation. J Phys A: Math Gen 14:729–733

    MATH  MathSciNet  Google Scholar 

  5. Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Batchelor GK (1956) The theory of homogeneous turbulence. Cambridge University Press, Cambridge

    Google Scholar 

  7. Batchelor GK (1982) The theory of homogeneous turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  8. Bertola F, Grundseth J, Hagesaether L, Dorao C, Luo H, Hjarbo KW, Svendsen HF, Vanni M, Baldi G, Jakobsen HA (2005) Numerical analysis and experimental validation of bubble size distribution in two-phase bubble column reactors. Multiph Sci Technol 17(1–2):123–145

    Google Scholar 

  9. Brenn G, Braeske H, Durst F (2002) Investigation of the unsteady two-phase flow with small bubbles in a model bubble column using phase-doppler anemometry. Chem Eng Sci 57(24):5143–5159

    Google Scholar 

  10. Buwa VV, Ranade VV (2002) Dynamics of gas-liquid flow in a rectangular bubble column: experimental and single/multigroup CFD simulations. Chem Eng Sci 57(22–23):4715–4736

    Google Scholar 

  11. Carrica PM, Drew D, Bonetto F, Lahey RT Jr (1999) A polydisperse model for bubbly two-phase flow around a surface ship. Int J Multiph Flow 25(2):257–305

    MATH  Google Scholar 

  12. Chen P, Dudukovic MP, Sanyal J (2005) Three-dimensional simulation of bubble column flows with bubble coalescence and breakup. AIChE J 51(3):696–712

    Google Scholar 

  13. Chen P, Sanyal J, Dudukovic MP (2005) Numerical simulation of bubble columns: effect of different breakup and coalescence closures. Chem Eng Sci 60:1085–1101

    Google Scholar 

  14. Cheng J, Yang C, Mao Z-S, Zhao C (2009) CFD modeling of nucleation, growth, aggregation, and breakage in continuous precipitation of barium sulfate in a stirred tank. Ind Eng Chem Res 48:6992–7003

    Google Scholar 

  15. Chester AK (1991) The modelling of coalescence processes in fluid-fluid dispersions: a review of current understanding. Trans IchemE 69(A):259–270

    Google Scholar 

  16. Colella D, Vinci D, Bagatin R, Masi M, Bakr EA (1999) A study on coalescence and breakage mechanisms in three different bubble columns. Chem Eng Sci 54(21):4767–4777

    Google Scholar 

  17. Coulaloglou CA, Tavlarides LL (1977) Description of interaction processes in agitated liquid–liquid dispersions. Chem Eng Sci 32(11):1289–1297

    Google Scholar 

  18. Danckwerts PV (1953) Continuous flow systems: distribution of residence times. Chem Eng Sci 2(1):1–18

    Google Scholar 

  19. Dorao CA (2006) High order methods for the solution of the population balance equation with applications to bubbly flows. Dr ing thesis, Department of Chemical Engineering, The Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  20. Dorao CA, Lucas D, Jakobsen HA (2007) Prediction of the evolution of the dispersed phase in bubbly flow problems. Appl Math Model, Accepted for publication

    Google Scholar 

  21. Doubliez L (1991) The drainage and rupture of a non-foaming liquid film formed upon bubble impact with a free surface. Int J Multiph Flow 17(6):783–803

    MATH  Google Scholar 

  22. Drazin PG, Reid WH (1981) Hydrodynamic stability. Cambridge Univerity Press, Cambridge

    MATH  Google Scholar 

  23. Eastwood CD, Armi L, Lasheras JC (2004) The breakup of immersible fluids in turbulent flows. J Fluid Mech 502:309–333

    MATH  Google Scholar 

  24. Fleischer C, Bierdel M, Eigenberger G (1994) Prediction of bubble size distributions in G/L-contactors with population balances. In: Proceedings of 3rd German/Japanese symposium on bubble columns, Schwerte, Germany, June 13–15, pp 229–235

    Google Scholar 

  25. Falola A, Borissova A, Wang XZ (2013) Extended method of moment for general population balance models including size dependent growth rate, aggregation and breakage kernels. Comput Chem Eng 56:1–11

    Google Scholar 

  26. Frank T, Zwart PJ, Shi J-M, Krepper E, Lucas D, Rohde U (2005) Inhomogeneous MUSIG model—a population balance approach for polydispersed bubbly flows. In: International conference on nuclear energy for new Europe 2005, Bled, Slovenia, 5–8 September

    Google Scholar 

  27. Friedlander SK (2000) Smoke, dust, and haze: fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, New York

    Google Scholar 

  28. Guido Lavalle G, Carrica PM, Clausse A, Qazi MK (1994) A bubble number density constitutive equation. Nucl Eng Des 152:213–224

    Google Scholar 

  29. Hagesaether L, Jakobsen HA, Svendsen HF (1999) Theoretical analysis of fluid particle collisions in turbulent flow. Chem Eng Sci 54(21):4749–4755

    Google Scholar 

  30. Hagesaether L, Jakobsen HA, Hjarbo K, Svendsen HF (2000) A coalescence and breakup module for implementation in CFD-codes. Comput Aided Chem Eng 8:367–372

    Google Scholar 

  31. Hagesaether L, Jakobsen HA, Svendsen HF (2002) A model for turbulent binary breakup of dispersed fluid particles. Chem Eng Sci 57(16):3251–3267

    Google Scholar 

  32. Hagesaether L, Jakobsen HA, Svendsen HF (2002) Modeling of the dispersed-phase size distribution in bubble columns. Ind Eng Chem Res 41(10):2560–2570

    Google Scholar 

  33. Hagesaether L (2002) Coalescence and break-up of drops and bubbles. Dr ing thesis, Department of Chemical Engineering, The Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  34. Havelka P, Gotaas C, Jakobsen HA, Svendsen HF (2004) Droplet formation and interactions under normal and high pressures. In: Proceedings at the 5th international conference on multiphase flow, ICMF’04, Yokohama, Japan, May 30–June 4

    Google Scholar 

  35. Hesketh RP, Etchells AW, Russell TWF (1991) Experimental observations of bubble breakage in turbulent flows. Ind Eng Chem Res 30(5):835–841

    Google Scholar 

  36. Hesketh RP, Etchells AW, Russell TWF (1991) Bubble breakage in pipeline flows. Chem Eng Sci 46(1):1–9

    Google Scholar 

  37. Himmelblau DM, Bischoff KB (1968) Process analysis and simulation: deterministic systems. Wiley, New York

    MATH  Google Scholar 

  38. Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J 1(3):289–295

    Google Scholar 

  39. Hulburt HM, Katz S (1964) Some problems in particle technology: a statistical mechanical formulation. Chem Eng Sci 19(8):555–574

    Google Scholar 

  40. Human HJ, Enkevort WJP, Bennema P (1982) In: Jancic SJ, deJong EJ (eds) Industrial crystallization 81. North Holland Publishing Co., Amesterdam, p 387

    Google Scholar 

  41. Jakobsen HA, Lindborg H, Dorao CA (2005) Modeling of bubble column reactors: progress and limitations. Ind Eng Chem Res 44:5107–5151

    Google Scholar 

  42. Kamp AM, Chesters AK, Colin C, Fabre J (2001) Bubble coalescence in turbulent flows: a mechanistic model for turbulence-induced coalescence applied to microgravity bubbly pipe flow. Int J Multiph Flow 27(8):1363–1396

    MATH  Google Scholar 

  43. Klaseboer E, Chevallier JP, Masbernat O, Gourdon C (1998) Drainage of the liquid film between drops colliding at constant approach velocity. In: Proceedings of the 3rd international conference on multiphase flow, ICMF98, Lyon, France, 8–12 June

    Google Scholar 

  44. Klaseboer E, Chevallier JP, Gourdon C, Masbernat O (2000) Film drainage between colliding drops at constant approach velocity: experimental and modeling. J Colloide Interface Sci 229(1):274–285

    Google Scholar 

  45. Kocamustafaogullari G, Ishii M (1995) Foundation of the interfacial area transport equation and its closure relations. Int J Heat Mass Transfer 38(3):481–493

    MATH  Google Scholar 

  46. Konno M, Aoki M, Saito S (1980) Simulations model for break-up process in an agitated tank. J Chem Eng Jpn 13:67–73

    Google Scholar 

  47. Kolev NI (1993) Fragmentation and coalescence dynamics in multi-phase flows. Exp Thermal Fluid Sci 6(3):211–251

    Google Scholar 

  48. Kolev NI (2002) Multiphase flow dynamics 2: mechanical and thermal interactions. Springer, Berlin

    Google Scholar 

  49. Kolmogorov AN (1941) Local structure of turbulence in incompressible viscous fluid for very large reynolds number. Dokl Akad Nauk SSSR 30:301–306

    Google Scholar 

  50. Kolmogorov AN (1949) On the breakage of drops in a turbulent flow. Dokl Akad Navk SSSR 66:825–828

    MATH  Google Scholar 

  51. Krishna R, Urseanu MI, van Baten JM, Ellenberger J (1999) Influence of scale on the hydrodynamics of bubble columns operating in the churn-turbulent regime: experiments vs Eulerian simulations. Chem Eng Sci 54(21):4903–4911

    Google Scholar 

  52. Krishna R, van Baten JM, Urseanu MI (2000) Three-phase Eulerian simulations of bubble column reactors operating in the churn-turbulent regime: a scale up strategy. Chem Eng Sci 55(16):3275–3286

    Google Scholar 

  53. Krishna R, van Baten JM (2001) Scaling up bubble column reactors with the aid of CFD. Inst Chem Eng Trans IChemE 79(A3):283–309

    Google Scholar 

  54. Krishna R, van Baten JM (2001) Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime. Chem Eng Sci 56(21–22):6249–6258

    Google Scholar 

  55. Kuboi R, Komasawa I, Otake T (1972) Behavior of dispersed particles in turbulent liquid flow. J Chem Eng Jpn 5:349–355

    Google Scholar 

  56. Kuboi R, Komasawa I, Otake T (1972) Collision and coalescence of dispersed drops in turbulent liquid flow. J Chem Eng Jpn 5:423–424

    Google Scholar 

  57. Laakkonen M, Moilanen P, Alopaeus V, Aittamaa J (2007) Modelling local bubble size distributions in agitated vessels. Chem Eng Sci 62:721–740

    Google Scholar 

  58. Laari A, Turunen I (2003) Experimental determination of bubble coalescence and break-up rates in a bubble column reactor. Can J Chem Eng 81(3–4):395–401

    Google Scholar 

  59. Lafi AY, Reyes JN (1994). General particle transport equations. Final Report OSU-NE-9409. Department of Nuclear Engineering, Oregon State University

    Google Scholar 

  60. Lasheras JC, Eastwood C, Martínez-Bazán C, Montañés JL (2002) A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow. Int J Multiph Flow 28(2):247–278

    MATH  Google Scholar 

  61. Lathouwers D, Bellan J (2000), Modeling of dense gas–solid reactive mixtures applied to biomass pyrolysis in a fluidized bed. In: Proceedings of the 2000 U.S. DOE hydrogen program, Review. NREL/CP-570-28890

    Google Scholar 

  62. Lathouwers D, Bellan J (2000) Modeling and simulation of bubbling fluidized beds containing particle mixtures. Proc Combust Inst 28:2297–2304

    Google Scholar 

  63. Lathouwers D, Bellan J (2001) Modeling of biomass pyrolysis for hydrogen production: the fluidized bed reactor. In: Proceedings of the 2001 U.S. DOE hydrogen program, Review. NREL/CP-570-30535

    Google Scholar 

  64. Lathouwers D, Bellan J (2001) Yield optimization and scaling of fluidized beds for tar production from biomass. Energy Fuels 15:1247–1262

    Google Scholar 

  65. Lathouwers D, Bellan J (2001) Modeling of dense gas–solid reactive mixtures applied to biomass pyrolysis in a fluidized bed. Int J Multiph Flow 27:2155–2187

    MATH  Google Scholar 

  66. Laurent F, Massot M (2001) Multi-fluid modeling of laminar polydisperse spray flames: origin, assumptions and comparison of sectional and sampling methods. Combust Theor Model 5:537–572

    MATH  Google Scholar 

  67. Laurencot P, Mischler S (2002) The continuous coagulation–fragmentation equations with diffusion. Arch Ration Mech Anal 162:45–99

    MATH  MathSciNet  Google Scholar 

  68. Laurencot P, Mischler S (2004) Modeling and computational methods for kinetic equations. Birkhäuser, Boston

    Google Scholar 

  69. Lee C-K, Erickson LE, Glasgow LA (1987) Bubble breakup and coalescence in turbulent gas–liquid dispersions. Chem Eng Comm 59(1–6):65–84

    Google Scholar 

  70. Lehr F, Mewes D (2001) A transport equation for the interfacial area density applied to bubble columns. Chem Eng Sci 56(3):1159–1166

    Google Scholar 

  71. Lehr F, Millies M, Mewes D (2002) Bubble-size distributions and flow fields in bubble columns. AIChE J 48(11):2426–2443

    Google Scholar 

  72. Levich VG (1962) Physicochemical hydrodynamics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  73. Liao Y, Lucas D (2009) A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem Eng Sci 64:3389–3406

    Google Scholar 

  74. Liao Y, Lucas D (2010) A literature review on mechanisms and models for the coalescence process of fluid particles. Chem Eng Sci 65:2851–2864

    Google Scholar 

  75. Litster JD, Smit DJ, Hounslow MJ (1995) Adjustable discretized population balance for growth and aggregation. AIChE J 41:591–603

    Google Scholar 

  76. Lo S (1996) Application of population balance to CFD modelling of bubbly flow via the MUSIG model. AEA Technology, AEAT-1096

    Google Scholar 

  77. Lo S (2000) Some recent developments and applications of CFD to multiphase flows in stirred reactors. In: Proceedings of AMIF-ESF workshop: computing methods for two-phase flow. Aussois, France, 12–14 January

    Google Scholar 

  78. Lo S (2000) Application of population balance to CFD modeling of gas–liquid reactors. In: Proceedings of trends in numerical and physical modelling for industrial multiphase flows, Corse, 27–29 September

    Google Scholar 

  79. Luo H (1993) Coalescence, break-up and liquid circulation in bubble column reactors. Dr ing Thesis, The Norwegian Institute of Technology, Trondheim

    Google Scholar 

  80. Luo H, Svendsen HF (1996) Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J 42(5):1225–1233

    Google Scholar 

  81. Marchisio DL, Vigil RD, Fox RO (2003) Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems. Chem Eng Sci 58(15):3337–3351

    Google Scholar 

  82. Marchisio DL, Vigil RD, Fox RO (2003) Quadrature method of moments for aggregation-breakage processes. J Colloid Interface Sci 258(2):322–334

    Google Scholar 

  83. Marrucci G (1969) A theory of Coalescence. Chem Eng Sci 24(6):975–985

    Google Scholar 

  84. Martínez-Bazán C, Montañés JL, Lasheras JC (1999) On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J Fluid Mech 401:157–182

    MATH  Google Scholar 

  85. Martínez-Bazán C, Montañés JL, Lasheras JC (1999) On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles. J Fluid Mech 401:183–207

    Google Scholar 

  86. Martínez-Bazán C, Rodrtíguez-Rodrtíguez J, Deane GB, Montañés JL, Lasheras JC (2010) Considerations on bubble fragmentation models. J Fluid Mech 661:159–177

    MATH  Google Scholar 

  87. Melzak ZA (1957) A scalar transport equation. Trans Am Math Soc 85:547–560

    MATH  MathSciNet  Google Scholar 

  88. Melzak ZA (1957) A scalar transport equation II. Mich Math J 4(3):193–206

    MathSciNet  Google Scholar 

  89. Millies M, Mewes D (1999) Interfacial area density in bubbly flow. Chem Eng Process 38(4–6):307–319

    Google Scholar 

  90. Mitre JF, Takahashi RSM, Ribeiro CP Jr, Lage PLC (2010) Analysis of breakage and coalescence models for bubble columns. Chem Eng Sci 65:6089–6100

    Google Scholar 

  91. Nayak AK, Borka Z, Petruno LE, Sporleder F, Jakobsen HA, Dorao CA, (2011) A combined multifluid-population balance model for vertical gas–liquid bubble driven flows considering bubble column operating conditions. Ind Eng Chem Res 50:1786–1798

    Google Scholar 

  92. Olmos E, Gentric C, Vial C, Wild G, Midoux N (2001) Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and breakup. Chem Eng Sci 56(21–22):6359–6365

    Google Scholar 

  93. Olmos E, Gentric C, Midoux N (2003) Numerical description of flow regime transitions in bubble column reactors by multiple gas phase model. Chem Eng Sci 58(10):2113–2121

    Google Scholar 

  94. Oolman TO, Blanch HW (1986) Bubble coalescence in stagnant liquid. Chem Eng Commun 43(4–6):237–261

    Google Scholar 

  95. Orme M (1997) Experiments on droplet collisions, bounce, coalescence and disruption. Prog Energy Combust Sci 23:65–79

    Google Scholar 

  96. Patruno LE (2010) Experimental and numerical investigations of liquid fragmentation and droplet generation for gas processing at high pressures. PhD thesis, Department of Chemical Engineering, The Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  97. Pilon L, Fedorov AG, Ramkrishna D, Viskanta R (2004) Bubble transport in three-dimensional laminar gravity-driven flow—mathematical formulation. J Non-Cryst Solids 336(2):71–83

    Google Scholar 

  98. Politano MS, Carrica PM, Baliño JL (2003) About bubble breakup models to predict bubble size distributions in homogeneous flows. Chem Eng Comm 190(3):299–321

    Google Scholar 

  99. Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  100. Prasher CL (1987) Crushing and grinding process handbook. Wiley, Chichester

    Google Scholar 

  101. Present RD (1958) Kinetic theory of gases. McGraw-Hill, New York

    Google Scholar 

  102. Prince MJ, Blanch HW (1990) Bubble coalescence and break-up in air-sparged bubble columns. AIChE J 36(10):1485–1499

    Google Scholar 

  103. Ramkrishna D (1985) The status of population balances. Revs Chem Eng 3:49–97

    Google Scholar 

  104. Ramkrishna D (2000) Population balances: theory and applications to particulate systems in engineering. Academic Press, San Diego

    Google Scholar 

  105. Randolph AD (1964) A population balance for countable entities. Can J Chem Eng 42(6):280

    Google Scholar 

  106. Randolph AD, Larson MA (1988) Theory of particulate processes: analysis and techniques of continuous crystallization, 2nd edn. Academic Press Inc, Harcourt Brace Jovanovich, Publishers, San Diego

    Google Scholar 

  107. Reyes Jr JN (1989) Statistically derived conservation equations for fluid particle flows. Proceedings of ANS Winter Meeting. Nuclear Thermal Hydraulics, 5th Winter Meeting

    Google Scholar 

  108. Population balance modelling of polydispersed particles in reactive flows. Prog Energy Combust Sci 36:412–443

    Google Scholar 

  109. Risso F, Fabre J (1998) Oscillations and breakup of a bubble immersed in a turbulent field. J Fluid Mech 372:323–355

    MATH  Google Scholar 

  110. Rodríguez-Rodríguez J, Martínez-Bazán C, Montañes JL (2003) A novel particle tracking and break-up detection algorithm: application to the turbulent break-up of bubbles. Meas Sci Technol 14(8):1328–1340

    Google Scholar 

  111. Ross SL, Curl RL (1973) Measurement and models of the dispersed phase mixing process. Proceedings of 4th joint chemical engineering conference, Paper 29b, Symposium Series 139, AIChE Press, Vancouver, Canada, 9–12 September

    Google Scholar 

  112. Saboni A, Gourdon C, Chesters AK (1999) The influence of inter-phase mass transfer on the drainage of partially-mobile liquid films between drops undergoing a constant interaction force. Chem Eng Sci 54(4):461–473

    Google Scholar 

  113. Saboni A, Alexandrova S, Gourdon C, Chesters AK (2002) Inter-drop coalescence with mass transfer: comparison of the approximate drainage models with numerical results. Chem Eng J 88(1–3):127–139

    Google Scholar 

  114. Sha Z, Laari A, Turunen I (2004) Implementation of population balance into multiphase-model in CFD simulation of bubble column. Proceedings of the 16th International Congress of Chemical Engineering, Praha, Czech Republic (paper E3.2)

    Google Scholar 

  115. Sha Z, Laari A, Turunen I (2006) Multi-phase-multi-size-group model for the inclusion of population balances into the CFD simulation of gas–liquid bubbly flows. Chem Eng Technol 29(5):550–559

    Google Scholar 

  116. Shah YT, Kelkar BG, Godbole SP, Deckwer W-D (1982) Design parameter estimations for bubble column reactors. AIChE J 28(3):353–379

    Google Scholar 

  117. Shi J, Zwart P, Frank T, Rohde U, Prasser H, (2004). Development of a multiple velocity multiple size group model for poly-dispersed multiphase flows. Annual Report. Institute of Safety Research. Forschungszentrum Rossendorf, Germany

    Google Scholar 

  118. Simonin O (1996) Combustion and turbulence in two-phase flows. von Karman Lecture Series 1996–02, von Karman Institute for Fluid Dynamics

    Google Scholar 

  119. Smoluchowski M (1916) Drei vortrage uber diffusion, Brownsche molekularbewegung und koagulation von kolloidteilchen. Phys Z 17:557–585

    Google Scholar 

  120. Smoluchowski M (1917) Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen. Z Physik Chem 92:129–168

    Google Scholar 

  121. Smoluchowski M (1918) Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen. Z Physik Chem, Leipzig Band XCII, pp 129–168

    Google Scholar 

  122. Solsvik J, Tangen S, Jakobsen HA (2013) On the evaluation of breakage kernels for fluid particles. Accepted for publication in Rev Chem Eng

    Google Scholar 

  123. Solsvik J, Jakobsen HA (2013) On the solution of the population balance equation for bubbly flows using the high-order least squares method: implementation issues

    Google Scholar 

  124. Sporleder F (2011) Simulation of chemical reactors using the least-squares spectral element method. PhD thesis, Department of Chemical Engineering, The Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  125. Sporleder F, Borka Z, Solsvik J, Jakobsen HA (2012) On the population balance equation. Rev Chem Eng 28:149–169

    Google Scholar 

  126. Stewart CW (1995) Bubble interaction in low-viscosity liquids. Int J Multiphase Flow 21(6):1037–1046

    MATH  Google Scholar 

  127. Thomas RM (1981) Bubble coalescence in turbulent flows. Int J Multiphase Flow 7(6): 709–717

    Google Scholar 

  128. Tsouris C, Tavlarides LL (1994) Breakage and coalescence models for drops in turbulent dispersions. AIChE J 40:395–406

    Google Scholar 

  129. Valentas KJ, Bilous O, Amundson NR (1966) Analysis of breakage in dispersed phase systems. I & EC Fundam 5(2):271–279

    Google Scholar 

  130. Valentas KJ, Amundson NR (1966) Breakage and coalescence in dispersed phase systems. I & EC Fundam 5(4):533–542

    Google Scholar 

  131. Vanni M (2000) Approximate population balance equation for aggregation-brakage processes. J Colloid Interface Sci 221(2):143–160

    Google Scholar 

  132. Venneker BCH, Derksen JJ, van den Akker HEA (2002) Population balance modeling of aerated stirred vessels based on CFD. AIChE J 48(4):673–685

    Google Scholar 

  133. Wang T, Wang J, Jin Y (2003) A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chem Eng Sci 58(20):4629–4637

    Google Scholar 

  134. Wang T, Wang J, Jin Y (2005) Population balance model for gas–liquid flows: influence of bubble coalescence and breakup models. Ind Eng Chem Res 44:7540–7549

    Google Scholar 

  135. Williams FA (1985) Combustion theory:The fundamental theory of chemically reacting flow systems, 2nd edn. Benjamin/Cummings, Menlo Park

    Google Scholar 

  136. Williams MMR, Loyalka SK (1991) Aerosol science theory and practice: with special applications to the nuclear industry. Pergamon Press, Oxford

    Google Scholar 

  137. Zhu Z (2009) The least-squares spectral element method solution of the gas-liquid multi-fluid model coupled with the population balance equation. Dr ing thesis, Department of Chemical Engineering, The Norwegian University of Science and Technology, Trondheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo A. Jakobsen .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jakobsen, H.A. (2014). The Population Balance Equation. In: Chemical Reactor Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-05092-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05092-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05091-1

  • Online ISBN: 978-3-319-05092-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics