Skip to main content

Introduction to Configuration Path Integral Monte Carlo

  • Chapter
  • First Online:
Complex Plasmas

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 82))

Abstract

In low-temperature high-density plasmas quantum effects of the electrons are becoming increasingly important. This requires the development of new theoretical and computational tools. Quantum Monte Carlo methods are among the most successful approaches to first-principle simulations of many-body quantum systems. In this chapter we present a recently developed method—the configuration path integral Monte Carlo (CPIMC) method for moderately coupled, highly degenerate fermions at finite temperatures. It is based on the second quantization representation of the \(N\)-particle density operator in a basis of (anti-)symmetrized \(N\)-particle states (configurations of occupation numbers) and allows to tread arbitrary pair interactions in a continuous space. We give a detailed description of the method and discuss the application to electrons or, more generally, Coulomb-interacting fermions. As a test case we consider a few quantum particles in a one-dimensional harmonic trap. Depending on the coupling parameter (ratio of the interaction energy to kinetic energy), the method strongly reduces the sign problem as compared to direct path integral Monte Carlo (DPIMC) simulations in the regime of strong degeneracy which is of particular importance for dense matter in laser plasmas or compact stars. In order to provide a self-contained introduction, the chapter includes a short introduction to Metropolis Monte Carlo methods and the second quantization of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, there are weaker conditions on the transition probabilities, but in practice, one uses the detailed balance.

  2. 2.

    Efficient with respect to a certain system with fixed parameters to be simulated, i.e. currently, there is no method suitable for all systems.

  3. 3.

    In this notation, operators in the interaction and the Schrödinger picture differ only concerning the presence of a time argument.

  4. 4.

    Due to the finite number of one-particle states in a practical simulation, the sums will not go up to infinity but to \(N_B\), the number of orbitals used in the simulation.

  5. 5.

    The one- and two-particle integrals used in these calculations have been calculated by K. Balzer with Mathematica [39].

  6. 6.

    These integrals have been calculated with a program by K. Balzer.

  7. 7.

    The finite temperature HF and CI programs were written by D. Hochstuhl.

  8. 8.

    Shown is the standard error, see (5.15). Within two times the standard error the results can be considered to coincide.

  9. 9.

    The data was produced by A. Filinov.

References

  1. Proceedings of the conference. Strongly Coupled Coulomb systems. J. Phys. A 42 No. 21 (2009)

    Google Scholar 

  2. M. Bonitz, C. Henning, D. Block, Complex plasmas: a laboratory for strong correlations. Rep. Prog. Phys. 73(6), 066501 (2010)

    Article  ADS  Google Scholar 

  3. H. Haberland, M. Bonitz, D. Kremp, Harmonics generation in electron-ion collisions in a short laser pulse. Phys. Rev. E 64(2), 026405 (2001)

    Article  ADS  Google Scholar 

  4. R. Redmer, G. Röpke, Progress in the theory of dense strongly coupled plasmas. Contrib. Plasma Phys. 50(10), 970 (2010)

    Article  ADS  Google Scholar 

  5. B. Holst, M. French, R. Redmer, Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen. Phys. Rev. B 83(23), 235120 (2011)

    Article  ADS  Google Scholar 

  6. M. Bonitz, A. Filinov, J. Böning, J.W. Dufty, in Introduction to Complex Plasmas, vol. 59, ed. by M. Bonitz, N. Horing, P. Ludwig (Springer, Berlin, Heidelberg, 2010), pp. 41–77

    Google Scholar 

  7. J.S. Tse, Ab initio molecular dynamics with density functional theory. Annu. Rev. Phys. Chem. 53(1), 249 (2002)

    Article  ADS  Google Scholar 

  8. D. Kremp, M. Schlanges, W. Kraeft, T. Bornath, Quantum Statistics of Nonideal Plasmas, 1st edn. (Springer, Berlin, Heidelberg, 2005)

    Google Scholar 

  9. M. Bonitz, Quantum Kinetic Theory (B G Teubner, Stuttgart, Leipzig, 1998)

    Google Scholar 

  10. K. Balzer, M. Bonitz, Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems (Springer, Heidelberg, New York, 2013)

    Google Scholar 

  11. R. Feynman, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    Google Scholar 

  12. D.M. Ceperley, Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67(2), 279 (1995)

    Article  ADS  Google Scholar 

  13. A. Filinov, N.V. Prokof’ev, M. Bonitz, Berezinskii-Kosterlitz-Thouless transition in two-dimensional dipole systems. Phys. Rev. Lett. 105(7), 070401 (2010)

    Article  ADS  Google Scholar 

  14. D. Ceperley, in Monte Carlo and Molecular Dynamics of Condensed Matter Systems (Editrice Compositori, Bologna, Italy, 1996)

    Google Scholar 

  15. M. Troyer, U. Wiese, Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94(17), 170201 (2005)

    Article  ADS  Google Scholar 

  16. D.M. Ceperley, Path-integral calculations of normal liquid \(^{3}\)He. Phys. Rev. Lett. 69(2), 331 (1992)

    Google Scholar 

  17. K.P. Driver, B. Militzer, All-Electron path integral Monte Carlo simulations of warm dense matter: application to water and carbon plasmas. Phys. Rev. Lett. 108(11), 115502 (2012)

    Article  ADS  Google Scholar 

  18. C. Pierleoni, D. Ceperley, in Computer Simulations, in Condensed Matter Systems: From Materials to Chemical Biology Volume 1, vol. 703, ed. by M. Ferrario, G. Ciccotti, K. Binder (Springer, Berlin, Heidelberg, 2006), pp. 641–683

    Google Scholar 

  19. M.A. Morales, C. Pierleoni, D.M. Ceperley, Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations. Phys. Rev. E 81(2), 021202 (2010)

    Article  ADS  Google Scholar 

  20. R. Egger, W. Häusler, C.H. Mak, H. Grabert, Crossover from fermi liquid to wigner molecule behavior in quantum dots. Phys. Rev. Lett. 82(16), 3320 (1999)

    Article  ADS  Google Scholar 

  21. V.S. Filinov, M. Bonitz, W. Ebeling, V.E. Fortov, Thermodynamics of hot dense H-plasmas: path integral Monte Carlo simulations and analytical approximations. Plasma Phys. Control. Fusion 43(6), 743 (2001)

    Article  ADS  Google Scholar 

  22. A.V. Filinov, M. Bonitz, Y.E. Lozovik, Wigner crystallization in mesoscopic 2D electron systems. Phys. Rev. Lett. 86(17), 3851 (2001)

    Article  ADS  Google Scholar 

  23. T. Schoof, M. Bonitz, A. Filinov, D. Hochstuhl, J.W. Dufty, Configuration path integral Monte Carlo. Contrib. Plasma Phys. 51(8), 687 (2011)

    Article  ADS  Google Scholar 

  24. N.V. Prokofev, B.V. Svistunov, I.S. Tupitsyn, Exact quantum Monte Carlo process for the statistics of discrete systems, J. Exp. Theor. Phys. Lett. 64(12), 911 (1996)

    Google Scholar 

  25. N.V. Prokofev, B.V. Svistunov, I.S. Tupitsyn, Exact, complete, and universal continuous-time worldline Monte Carlo approach to the statistics of discrete quantum systems, J. Exp. Theor. Phys. 87(2), 310 (1998)

    Google Scholar 

  26. M. Troyer, F. Alet, S. Trebst, S. Wessel, Non-local updates for quantum Monte Carlo simulations. AIP Conf. Proc. 690, 156 (2003)

    Article  ADS  Google Scholar 

  27. E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Continuous-time Monte Carlo methods for quantum impurity models. Rev. Mod. Phys. 83, 349 (2011)

    Article  ADS  Google Scholar 

  28. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087 (1953)

    Article  ADS  Google Scholar 

  29. W. Janke, in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, ed by J. Grotendorst, D. Marx, A. Muramatsu (John von Neumann Institute for Computing, NIC, Jülich, 2002)

    Google Scholar 

  30. T. Nakamura, Vanishing of the negative-sign problem of quantum Monte Carlo simulations in one-dimensional frustrated spin systems. Phys. Rev. B 57(6), R3197 (1998)

    Article  ADS  Google Scholar 

  31. A.P. Lyubartsev, Simulation of excited states and the sign problem in the path integral Monte Carlo method. J. Phys. A 38(30), 6659 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. T. Helgaker, P. Jorgensen, J. Olsen, Molecular Electronic-Structure Theory, 1st edn. (Wiley, Chichester, Hoboken, 2000)

    Google Scholar 

  33. H.F. Trotter, On the product of semi-groups of operators. Proc. Amer. Math. Soc. 10(4), 545 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Commun. Math. Phys. 51(2), 183 (1976)

    Article  MATH  ADS  Google Scholar 

  35. A.W. Sandvik, J. Kurkijrvi, Quantum Monte Carlo simulation method for spin systems. Phys. Rev. B 43(5950) (1991)

    Google Scholar 

  36. N.V. Prokof’ev, Worm algorithm for classical and quantum statistical models, Lecture notes at “Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry”, 2008, Trieste, http://mcwa.csi.cuny.edu/umass/lectures.html

  37. M. Bonitz, D. Semkat (eds.), Introduction to Computational Methods in Many Body Physics (Rinton Press Inc, Paramus, 2006)

    Google Scholar 

  38. T. Schoof, Thermodynamische Eigenschaften entarteter, korrelierte Fermionen, Diplomarbeit (in German). (Kiel University, 2011)

    Google Scholar 

  39. Wolfram Research Inc, Mathematica. Version 7.0 (Wolfram Research Inc, Champaign, Illinois, 2008)

    Google Scholar 

  40. A. Filinov, M. Bonitz, Collective and single-particle excitations in two-dimensional dipolar Bose gases. Phys. Rev. A 86(4), 043628 (2012)

    Article  ADS  Google Scholar 

  41. D. Hochstuhl, M. Bonitz, Time-dependent restricted-active-space configuration-interaction method for the photoionization of many-electron atoms. Phys. Rev. A 86, 053424 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to K. Balzer, A. Filinov and D. Hochstuhl for providing supplementary data shown in this chapter. We acknowledge financial support by the Deutsche Forschungsgemeinschaft via grant BO1366-10 and a grant for CPU time at the HLRN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Schoof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schoof, T., Groth, S., Bonitz, M. (2014). Introduction to Configuration Path Integral Monte Carlo. In: Bonitz, M., Lopez, J., Becker, K., Thomsen, H. (eds) Complex Plasmas. Springer Series on Atomic, Optical, and Plasma Physics, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-05437-7_5

Download citation

Publish with us

Policies and ethics