Skip to main content

Part of the book series: Springer Geology ((SPRINGERGEOL))

  • 1953 Accesses

Abstract

Age of the Main Central Thrust, at different places, obtained by different methods is described. Litho-tectonic subdivisions are mentioned along with magmatic events. Both Vaikrita and Munsiari rocks represent two distinct rock assemblages and both have undergone pre-Himalayan metamorphism. A model is proposed to explain the occurrence of younger Vaikrita rocks on the thrust hanging wall and older Munsiari rocks in footwall of the Vaikrita thrust. The model is based on reactivation of early rift related normal fault as thrust fault. Details of structural features along the Satluj valley are described primarily to explain the interference between Karcham oblique fault ramp and two generations of folds. Change in orientation of early and superposed folds in vicinity of Vaikrita thrust is illustrated. Field evidence suggests that after locking of the Vaikrita thrust, the maximum extension has taken place along the strike of the thrust. Different models proposed for structural evolution of the High Himalaya are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad T, Harris N, Bickle M, Chapman H, Bunbury J, Prince C (2000) Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline series, Garhwal Himalaya. Geol Soc Am Bull 112:467–477

    Article  Google Scholar 

  • Arita K (1983) Origin of the inverted metamorphism of the Lower Himalaya, Central Nepal. Tectonophysics 95:43–60

    Article  Google Scholar 

  • Arita K, Dallmeyer RD, Takasu A (1997) Tectonothermal evolution of the Lesser Himalaya, Nepal: constraints from Ar/Ar ages from the Kathmandu Nappe. The Island Arc 6:372–385

    Article  Google Scholar 

  • Baig MS, Lawrence RD, Snee LW (1988) Evidence for late Precambrian to Early Cambrian orogeny in north-west Himalaya, Pakistan. Geol Mag 125:83–86

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Medvedev S (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J Geophys Res 109, B06406. doi:10.1029/2003JB002809

  • Bird P, Toksoz MN, Sleep NH (1975) Thermal and mechanical models of continent-continent collision zone. J Geophys Res 80:4405–4416

    Article  Google Scholar 

  • Burchfiel BC, Chen Z, Hodges KV, Liu Y, Royden LH, Deng C, Xu J (1992) The South Tibetan Detachment System, Himalayan orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geol Soc Am, Special Paper 269:1–41

    Article  Google Scholar 

  • Caddick MJ, Bickle MJ, Harris NBW, Holland TJB, Horstwood MSA, Parrish RR, Ahmad T (2007) Burial and exhumation history of a Lesser Himalayan schist: recording the formation of an inverted metamorphic sequence in NW India. Earth Planet Sci Lett 264:375–390. doi:10.1016/j.epsl.2007.09.011

    Article  Google Scholar 

  • Catlos EJ, Harrison TM, Manning CE, Grove M, Rai SM, Hubbard MS, Upreti BN (2002a) Records of the evolution of the Himalayan orogen from in situ Th–Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal. J Asian Earth Sci 20:459–479

    Article  Google Scholar 

  • Catlos JE, Harrison TM, Dubey CS, Edwards MA (2002b) P-T-t constraints on the evolution of the Sikkim Himalaya (Abstract). In: 17th Himalaya-Karakoram-Tibet Workshop, Gangtok, Sikkim, India, pp 6–7

    Google Scholar 

  • Copley A, Avouac JP, Wernicke BP (2011) Evidence for mechanical coupling and strong lower crust beneath southern Tibet. Nature 472:79–81. doi:10.1038/nature09926

    Article  Google Scholar 

  • Coward MP, Butler RWH, Khan AM, Knipe RJ (1987) The tectonic history of Kohistan and its implications for Himalayan structure. J Geol Soc London 144:377–391

    Article  Google Scholar 

  • Daniel CG, Hollister LS, Parrish RR, Grujic D (2003) Exhumation of the Main Central Thrust from lower crustal depths, Eastern Bhutan Himalaya. J Metamorph Geol 21:317–334

    Article  Google Scholar 

  • Dubey AK (1999) Oblique thrust ramps in the Himalaya: a study based on model experiments. Gondwana Research Group Memoir 6, Gondwana Research Group, Japan, pp 39–49

    Google Scholar 

  • Dubey AK, Bhakuni SS (2007) Younger hanging wall rocks along the Vaikrita Thrust of the High Himalaya: a model based on inversion tectonics. J Asian Earth Sci 29:424–429

    Article  Google Scholar 

  • Dubey AK, Bhat MI (1991) Structural evolution of the Simla area, NW Himalaya: implications for crustal thickening. J SE Asian Earth Sci 6:41–53

    Article  Google Scholar 

  • Dubey AK, Paul SK (1993) Map patterns produced by thrusting and superposed folding: model experiments and example from the NE Kumaun Himalaya. Eclogae Geol Helv 86:839–852

    Google Scholar 

  • Edwards MA, Harrison TM (1997) When did the roof collapse? Late Miocene north-south extension in the High Himalaya revealed by Th–Pb monazite dating of the Khula Kangri granite. Geology 25:543–546

    Article  Google Scholar 

  • England P, Molnar P (1993) The interpretation of inverted metamorphic isograds using simple physical calculations. Tectonics 12:145–157

    Article  Google Scholar 

  • Frank W, Hoinkes G, Miller C, Purtscheller F, Richter W, Thoni M (1973) Relations between metamorphism and orogeny in a typical section of the Indian Himalaya, NW Himalaya, S-Lahaul, Kulu, Himachal Pradesh: first comprehensive report. Tschermaks Mineralogische Petrographische Mitteilungen 20:303–332

    Article  Google Scholar 

  • Gansser A (1964) Geology of the Himalaya. Interscience, New York 289 pp

    Google Scholar 

  • Grujic D, Casey M, Davidson C, Hollister LS, Kundig R, Pavlis T, Schmid S (1996) Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260:21–43

    Article  Google Scholar 

  • Harris N (2007) Channel flow and the Himalayan-Tibet orogen: a critical review. J Geol Soc London 164:511–523

    Article  Google Scholar 

  • Harris NBW, Caddick M, Kosler J, Goswami S, Vance D, Tindie AG (2004) The pressure-temperature-time path of migmatites from the Sikkim Himalaya. J Metamorph Geol 22:249–264

    Article  Google Scholar 

  • Harrison TM, Ryerson FJ, McKeegan KD, Le Fort P, Yin A (1996) Th–Pb monazite ages of Himalayan metamorphic and leucogranitic rocks: Constraints on the timing of inverted metamorphism and slip on the MCT and STD. In: Macfarlane AM, Sorkhabi RB, Quade J (eds) 11th Himalaya-Karakoram-Tibet Workshop Abstracts: Flagstaff, Northern Arizona University, pp 58–59

    Google Scholar 

  • Harrison TM, Grove M, Lovera M, Catlos EJ (1998) A model for the origin of Himalayan anatexis and inverted metamorphism. J Geophys Res 103:27017–27032

    Article  Google Scholar 

  • Heim A, Gansser A (1939) Central Himalaya: geological observation of the Swiss expedition in 1936. Mémoires de la Société Helv’tique des Sciences Naturelles 73:1–245

    Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull 112:324–350

    Article  Google Scholar 

  • Hodges KV, LeFort P, Pecher A (1988a) Possible thermal buffering by crustal anatexis in collisional orogens: Thermobarometric evidence from the Nepalese Himalaya. Geology 16:707–710

    Article  Google Scholar 

  • Hodges KV, Hubbard MS, Silverberg DS (1988b) Metamorphic constraints on the thermal evolution of the central Himalayan Orogen. Roy Soc London Philosophical Trans 326:257–280

    Article  Google Scholar 

  • Hodges KV, Parrish RR, Housh TB, Lux DR, Burchfiel BC, Royden LH, Chen Z (1992) Simultaneous Miocene extension and shortening in the Himalayan orogeny. Science 258:1466–1470

    Article  Google Scholar 

  • Hodges KV, Parrish RR, Searle MP (1996) Tectonic evolution of the central Annapurna Range, Nepalese Himalaya. Tectonics 15:1264–1291

    Article  Google Scholar 

  • Hubbard MS (1989) Thermobarometric constraints on the thermal history of the Main Central thrust zone and Tibetan slab, eastern Himalaya. J Metamorph Geol 7:19–30

    Article  Google Scholar 

  • Hubbard MS, Harrison TM (1989) 40Ar/39Ar age constraints on deformation and metamorphism in the Main Central Thrust zone and Tibetan Slab, eastern Nepal Himalaya. Tectonics 8:865–880

    Article  Google Scholar 

  • Jain AK, Manickavasagam RM (1993) Inverted metamorphism in the intracontinental ductile shear zone during Himalayan collision tectonics. Geology 21:407–410

    Article  Google Scholar 

  • Jain AK, Kumar D, Singh S, Kumar A, Lal N (2000) Timing, quantification and tectonic modelling of Pliocene–Quaternary movements in the NW Himalaya: evidence from fission track dating. Earth Planet Sci Lett 179:437–451. doi:10.1016/S0012-821X(00)00133-3

    Article  Google Scholar 

  • Jamieson R, Beaumont C, Medvedev S, Nguyen MH (2004) Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. J Geophys Res 109:B06407. doi:10.1029/2003JB002811

    Article  Google Scholar 

  • Jaupart C, Provost A (1985) Heat focusing, granite genesis and inverted metamorphic gradients in continental collision zones. Earth Planet Sci Lett 73:385–397. doi:10.1016/0012-821X(85)90086-X

    Article  Google Scholar 

  • Kohn MJ (2008) P-T-t data from Central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan sequence. Bull Geol Soc Am 120:259–273. doi:10.1130/B26252.1

    Article  Google Scholar 

  • Le Fort P (1975) Himalaya: the collided range. Present knowledge of the continental arc. Am J Sci 275:1–44

    Article  Google Scholar 

  • Lyon-Caen H, Molnar P (1983) Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J Geophys Res 88:8171–8191

    Article  Google Scholar 

  • Macfarlane (1993) Chronology of tectonic events in the crystalline core of the Himalaya, Langtang National Park, central Nepal. Tectonics 12:1004–1025

    Article  Google Scholar 

  • Makovsky Y, Klemperer SL, Ratschbacher L, Brown L, Li M, Zhao W, Meng F (1996) INDEPTH wide-angle reflection observation of P-wave to s-wave conversions from crustal bright spots in Tibet. Science 274:1690–1691

    Article  Google Scholar 

  • Metcalfe RP (1993) Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan slab in the Garhwal Himalaya. In: Treloar PJ, Searle MP (eds) Himalayan Tectonics. Geol Soc London, Special Publication 74:485–509

    Google Scholar 

  • Miller C, Klotzli U, Frank W, Thoni M, Grasemann B (2000) Proterozoic crustal evolution in the NW Himalaya (India) as recorded by circa 1.80 Ga mafic and 1.84 Ga granitic magmatism. Precambr Res 103:191–206

    Article  Google Scholar 

  • Myrow PM, Hughes NC, Paulsen TS, Williams IS, Parcha SK, Thompson KR, Bowring SA, Peng S-C, Ahluwalia AD (2003) Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet Sci Lett 212:433–441

    Article  Google Scholar 

  • Najman Y, Bickle M, Garzanti E, Pringle M, Barfod D, Brozovic N, Burbank D, Ando S (2009) Reconstructing the exhumation history of the Lesser Himalaya, NW India, from a multi-technique provenance study of the foreland basin Siwalik Group. Tectonics 28, TC5018. doi:10.1029/2009TC002506

    Article  Google Scholar 

  • Nakata T (1989) Active faults of the Himalaya of India and Nepal. Geol Soc Am Special Paper 232:243–264

    Article  Google Scholar 

  • Nelson KD and Project INDEPTH Team (1996) Partially molten middle crust beneath Southern Tibet: synthesis of project INDEPTH results. Science 274:1684–1696

    Article  Google Scholar 

  • Oreshin S, Kiselev S, Vinnik L, Prakasam KS, Rai SS, Makeyeva L, Savvin Y (2008) Crust and mantle beneath western Himalaya, Ladakh and western Tibet from integrated seismic data. Earth Planet Sci Lett 271:75–87

    Article  Google Scholar 

  • Parrish RR, Hodges KV (1996) Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Geol Soc Am Bull 108:904–911

    Article  Google Scholar 

  • Patel RC, Carter A (2009) Exhumation history of the Higher Himalayan Crystalline along Dhauliganga-Goriganga river valleys, NW India: new constraints from fission track analysis. Tectonics 28, TC3004. doi:10.1029/2008TC002373

    Article  Google Scholar 

  • Paul SK, Roy AK (1991) Significance of satellite imagery in the elucidation of tectonic set-up of Himachal and UP Himalaya. In: Gupta PN, Roy AK (eds) Mountain resource and management and remote sensing. Surya Publication, Dehradun, pp 27–37

    Google Scholar 

  • Pecher A (1991) The contact between the Higher Himalaya crystallines and the Tibetan sedimentary series: Miocene large-scale dextral shearing. Tectonics 10:587–598

    Article  Google Scholar 

  • Pognante U, Lombardo B (1989) Metamorphic evolution of the High Himalayan Crystallines SE Zanskar, India. J Metamorph Geol 7:9–17

    Article  Google Scholar 

  • Pognante U, Castelli D, Benna P, Genivese G, Oberli F, Meier M, Tonarini S (1990) The crystalline units of the High Himalaya in the Lahul-Zanskar region (north-west India): metamorphic–tectonic history and geochronology of the collided and imbricated Indian plate. Geol Mag 127:101–116

    Article  Google Scholar 

  • Raj S (1983) Variation of structural elements across the Jutogh thrust and its implications: a study based on field evidence and model experiments. Geosci J 4:157–168

    Google Scholar 

  • Robinson D, DeCelles PG, Copeland P (2006) Tectonic evolution of the Himalayan thrust belt in western Nepal: implications for channel flow models. Geol Soc Am Bull 118:865–885. doi:10.1130/B25911.1

    Article  Google Scholar 

  • Royden LH (1993) The steady state thermal structure of eroding orogenic belts and accretionary prisms. J Geophys Res 98:4487–4507

    Article  Google Scholar 

  • Royden LH, Burchfiel BC (1987) Thin-skinned N-S extension within the convergent Himalayan region: Gravitational collapse of a Miocene topographic front. Geol Soc London, Special Publication 28:611–619

    Article  Google Scholar 

  • Sachan HK, Kohn MJ, Saxena A, Corrie SL (2010) The Malari leucogranite, Garhwal Himalaya, northern India: chemistry, age, and tectonic implications. Bull Geol Soc Am 122:1865–1876. doi:10.1130/B30153.1

    Article  Google Scholar 

  • Searle MP, Rex AJ (1989) Thermal model for the Zanskar Himalaya. J Metamorph Geol 7:127–134

    Article  Google Scholar 

  • Searle MP, Cooper DWJ, Rex AJ (1988) Collision tectonics of the Ladakh-Zanskar Himalaya. Philosophical Trans Roy Soc London Series A 326:117–150

    Article  Google Scholar 

  • Searle MP, Waters DJ, Rex DC, Wilson RN (1992) Pressure, temperature and time constraints on Himalayan metamorphism from eastern Kashmir and western Zanskar. J Geol Soc London 149:753–773

    Article  Google Scholar 

  • Searle MP, Waters DJ, Dranfield MW, Stephenson BJ, Walker CB, Walker JD, Rex DC (1999) Thermal and mechanical models for the structural and metamorphic evolution of the Zanskar High Himalaya. In: Mac Niocaill C, Ryan PD (eds) Continental tectonics. Geol Soc London, Special Publication 164:139–156

    Google Scholar 

  • Sen K, Dubey AK, Tripathi K, Pfänder JA (2012) Composite mesoscopic and magnetic fabrics of the Paleo-Proterozoic Wangtu Gneissic Complex, Himachal Himalaya, India: implications for ductile deformation and superposed folding of the Himalayan basement rocks. J Geodyn 61:81–93

    Article  Google Scholar 

  • Srikantia SV, Sharma RP (1976) Geology of Shali Belt and the adjoining areas. Memoir Geological Survey of India 106:31–166

    Google Scholar 

  • Srikantia SV, Bhargava ON (1998) Geology of Himachal Pradesh. Geological Survey of India, Bangalore 406 pp

    Google Scholar 

  • Thoni M (1977) Geology, structural evolution and metamorphic zoning in the Kulu valley (Himachal Himalaya, India) with special reference to the reverse metamorphism. Mitt Gesch Bergbaustud Ostern 24:125–187

    Google Scholar 

  • Treloar PJ, Rex DC, Guise PG, Coward MP, Searle MP, Windley BF, Petterson MG, Jan MQ, Luff IW (1989) K–Ar and Ar–Ar geochronology of the Himalayan collision in NW Pakistan: constraints on the timing of suturing, deformation, metamorphism and uplift. Tectonics 8:881–909. doi:10.1029/TC008i004p00881

    Article  Google Scholar 

  • Tripathi K, Sen K, Dubey AK (2011) Modification of fabric in pre-Himalayan granitic rocks by post-emplacement ductile deformation: insights from microstructures, AMS and U–Pb geochronology of the Paleozoic Kinnaur Kailash Granite and associated Cenozoic leucogranites of the South Tibetan Detachment zone, Himachal High Himalaya. Int J Earth Sci. doi 10.1007/s00531-011-0657-z

  • Valdiya KS (1973) Lithological subdivision and tectonics of the Central Crystalline zone of Kumaun Himalaya. In: Seminar proceedings of geodynamics Himalayan region. National Geophysical Research Institute, Hyderabad, pp 304–305

    Google Scholar 

  • Valdiya KS (1980) Geology of Kumaun Lesser Himalaya. Wadia Institute of Himalayan Geology, Dehra Dun 291 pp

    Google Scholar 

  • Valdiya KS (1998) Geodynamic Himalaya. Universities Press, Hyderabad 178 pp

    Google Scholar 

  • Valdiya KS, Paul SK, Chandra T, Bhakuni SS, Upadhyay RC (1999) Tectonic and lithological characterization of Himadri (Great Himalaya) between Kali and Yamuna rivers, central Himalaya. Himalayan Geol 20:1–17

    Google Scholar 

  • Vannay JC, Grasemann B (1998) Inverted metamorphism in the High Himalaya of Himachal Pradesh (NW India): phase equilibria versus thermobarometry. Schweizerische Mineralogie ssche und Petrographische Mittecilungen 78:107–132

    Google Scholar 

  • Vannay J-C, Grasemann B (2001) Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol Mag 138:253–276

    Article  Google Scholar 

  • Vannay J-C, Grasemann B, Rahn M, Frank W, Carter A, Baudraz V, Cosca M (2004) Miocene to Holocene exhumation of metamorphic crustal wedges in the NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23(1):1–24, TC 1014. doi:10.1029/2002TC001429,2004

  • Walker JD, Martin MW, Bowring SA, Searle MP, Waters DJ, Hodges KV (1999) Metamorphism, melting, and extension: age constraints from the High Himalayan slab of southeast Zanskar and northwest Lahaul. J Geol 107:473–495

    Article  Google Scholar 

  • Wang A, Garver JI, Wang G, Smith JA, Zhang K (2010) Episodic exhumation of the Greater Himalayan Sequence since the Miocene constrained by fission track thermochronology in Nyalam, central Himalaya. Tectonophysics 495:315–323. doi:10.1016/j.tecto.2010.09.037

    Article  Google Scholar 

  • Wu C, Nelson KD, Wortman G (1998) Yadong cross structure and South Tibetan Detachment in the east central Himalaya (89o–90oE). Tectonics 17:28–45. doi:10.1029/97TC03386

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history and foreland sedimentation. Earth Sci Rev 76:1–131. doi:10.1016/j.earscirev.2005.05.004

    Article  Google Scholar 

  • Yin A, Dubey CS, Kelty TK, Webb AAG, Harrison TM, Chou CY, Celerier J (2010) Geologic correlation of the Himalayan orogen and Indian craton: Part 2. Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya. Geol Soc Am Bull 122:360–395. doi:10.1130/B26461.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Dubey .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubey, A.K. (2014). The High Himalaya. In: Understanding an Orogenic Belt. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-05588-6_12

Download citation

Publish with us

Policies and ethics