Skip to main content

A Finite Volume Scheme with the Discrete Maximum Principle for Diffusion Equations on Polyhedral Meshes

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 77))

Abstract

We present a cell-centered finite volume (FV) scheme with the compact stencil formed mostly by the closest neighboring cells. The discrete solution satisfies the discrete maximum principle and approximates the exact solution with second-order accuracy. The coefficients in the FV stencil depend on the solution; therefore, the FV scheme is nonlinear. The scheme is applied to the steady state diffusion equation discretized on a general polyhedral mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FVCA6 3D Benchmark. http://www.latp.univ-mrs.fr/latp_numerique/?q=node/4

  2. Agelas, L., Eymard, R., Herbin, R.: A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media. C. R. Acad. Sci. Paris Ser. I. 347, 673–676 (2009)

    Google Scholar 

  3. Chernyshenko, A.: Generation of adaptive polyhedral meshes and numerical solution of 2nd order elliptic equations in 3D domains and on surfaces. Ph.D. thesis, INM RAS, Moscow (2013).

    Google Scholar 

  4. Danilov, A., Vassilevski, Y.: A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Russ. J. Numer. Anal. Math. Model. 24(3), 207–227 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. (2014). To appear

    Google Scholar 

  6. Gao, Z.M., Wu, J.M.: A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2d and 3d meshes. J. Comp. Phys. 250, 308–331 (2013)

    Article  Google Scholar 

  7. LePotier, C.: Schema volumes finis monotone pour des operateurs de diffusion fortement anisotropes sur des maillages de triangle non structures. C. R. Acad. Sci. Paris Ser. I. 341, 787–792 (2005)

    Google Scholar 

  8. Lipnikov, K., Svyatskiy, D., Shashkov, M., Vassilevski, Y.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes. J. Comp. Phys. 227, 492–512 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Minimal stencil finite volume scheme with the discrete maximum principle. Russ. J. Numer. Anal. Math. Model. 27(4), 369–385 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Anderson acceleration for nonlinear finite volume scheme for advection-diffusion problems. SIAM J. Sci. Comput. 35(2), 1120–1136 (2013)

    Article  MathSciNet  Google Scholar 

  11. Yuan, G., Sheng, Z.: The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J. Comp. Phys. 230(7), 2588–2604 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by RFBR grants 12-01-33084, 14-01-00830, Russian Presidential grant MK-7159.2013.1, Federal target programs of Russian Ministry of Education and Science, ExxonMobil Upstream Research Company, and project “Breakthrough” of Rosatom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Chernyshenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chernyshenko, A., Vassilevski, Y. (2014). A Finite Volume Scheme with the Discrete Maximum Principle for Diffusion Equations on Polyhedral Meshes. In: Fuhrmann, J., Ohlberger, M., Rohde, C. (eds) Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects. Springer Proceedings in Mathematics & Statistics, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-319-05684-5_18

Download citation

Publish with us

Policies and ethics