Skip to main content

Mass Spectrometry-Based Biomarkers in Drug Development

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 806))

Abstract

Advances in mass spectrometry, proteomics, protein bioanalytical approaches, and biochemistry have led to a rapid evolution and expansion in the area of mass spectrometry-based biomarker discovery and development. The last decade has also seen significant progress in establishing accepted definitions, guidelines, and criteria for the analytical validation, acceptance, and qualification of biomarkers. These advances have coincided with a decreased return on investment for pharmaceutical research and development and an increasing need for better early decision making tools. Empowering development teams with tools to measure a therapeutic interventions impact on disease state and progression, measure target engagement, and to confirm predicted pharmacodynamic effects is critical to efficient data-driven decision making. Appropriate implementation of a biomarker or a combination of biomarkers can enhance understanding of a drugs mechanism, facilitate effective translation from the preclinical to clinical space, enable early proof of concept and dose selection, and increase the efficiency of drug development. Here we will provide descriptions of the different classes of biomarkers that have utility in the drug development process as well as review specific, protein-centric, mass spectrometry-based approaches for the discovery of biomarkers and development of targeted assays to measure these markers in a selective and analytically precise manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  CAS  Google Scholar 

  2. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  CAS  Google Scholar 

  3. Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW (2004) Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J Proteome Res 3(2):235–244

    Article  CAS  Google Scholar 

  4. Baldwin MA (2004) Protein identification by mass spectrometry: issues to be considered. Mol Cell Proteomics 3(1):1–9

    Article  CAS  Google Scholar 

  5. Barr JR, Maggio VL, Patterson DG Jr, Cooper GR, Henderson LO, Turner WE, Smith SJ, Hannon WH, Needham LL, Sampson EJ (1996) Isotope dilution—mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin Chem 42(10):1676–1682

    CAS  Google Scholar 

  6. Batalha IL, Lowe CR, Roque AC (2012) Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trends Biotechnol 30(2):100–110

    Article  CAS  Google Scholar 

  7. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95

    Article  Google Scholar 

  8. Breitling R (2006) Biological microarray interpretation: the rules of engagement. Biochim Biophys Acta 1759(7):319–327

    Article  CAS  Google Scholar 

  9. Carr S, Aebersold R, Baldwin M, Burlingame A, Clauser K, Nesvizhskii A (2004) The need for guidelines in publication of peptide and protein identification data: working group on publication guidelines for peptide and protein identification data. Mol Cell Proteomics 3(6):531–533

    Article  CAS  Google Scholar 

  10. Carser JE, Quinn JE, Michie CO, O’Brien EJ, Mccluggage WG, Maxwell P, Lamers E, Lioe TF, Williams AR, Kennedy RD, Gourley C, Harkin DP (2011) BRCA1 is both a prognostic and predictive biomarker of response to chemotherapy in sporadic epithelial ovarian cancer. Gynecol Oncol 123(3):492–498

    Article  CAS  Google Scholar 

  11. Chandra H, Reddy PJ, Srivastava S (2011) Protein microarrays and novel detection platforms. Expert Rev Proteomics 8(1):61–79

    Article  CAS  Google Scholar 

  12. Chung C, Christianson M (2014) Predictive and prognostic biomarkers with therapeutic targets in breast, colorectal, and non-small cell lung cancers: a systemic review of current development, evidence, and recommendation. J Oncol Pharm Pract 20(1):11–28

    Article  Google Scholar 

  13. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, Gudnason V (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350(14):1387–1397

    Article  CAS  Google Scholar 

  14. Desiderio DM, Kai M (1983) Preparation of stable isotope-incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biomed Mass Spectrom 10(8):471–479

    Article  CAS  Google Scholar 

  15. Desiderio DM, Kai M, Tanzer FS, Trimble J, Wakelyn C (1984) Measurement of enkephalin peptides in canine brain regions, teeth, and cerebrospinal fluid with high-performance liquid chromatography and mass spectrometry. J Chromatogr 297:245–260

    Article  CAS  Google Scholar 

  16. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412(6849):822–826

    Article  CAS  Google Scholar 

  17. Dimasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185

    Article  Google Scholar 

  18. Elbert DL, Mawuenyega KG, Scott EA, Wildsmith KR, Bateman RJ (2008) Stable isotope labeling tandem mass spectrometry (SILT): integration with peptide identification and extension to data-dependent scans. J Proteome Res 7(10):4546–4556

    Article  CAS  Google Scholar 

  19. Fang X, Zhang WW (2008) Affinity separation and enrichment methods in proteomic analysis. J Proteomics 71(3):284–303

    Article  CAS  Google Scholar 

  20. Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2(7):566–580

    Article  CAS  Google Scholar 

  21. Gatlin CL, Kleemann GR, Hays LG, Link AJ, Yates JR III (1998) Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal Biochem 263(1):93–101

    Article  CAS  Google Scholar 

  22. Gillette MA, Mani DR, Carr SA (2005) Place of pattern in proteomic biomarker discovery. J Proteome Res 4(4):1143–1154

    Article  CAS  Google Scholar 

  23. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5(12):e15004

    Article  CAS  Google Scholar 

  24. Grimwood S, Hartig PR (2009) Target site occupancy: emerging generalizations from clinical and preclinical studies. Pharmacol Ther 122(3):281–301

    Article  CAS  Google Scholar 

  25. Gustavsson N, Greber B, Kreitler T, Himmelbauer H, Lehrach H, Gobom J (2005) A proteomic method for the analysis of changes in protein concentrations in response to systemic perturbations using metabolic incorporation of stable isotopes and mass spectrometry. Proteomics 5(14):3563–3570

    Article  CAS  Google Scholar 

  26. Gutman S, Kessler LG (2006) The US Food and Drug Administration perspective on cancer biomarker development. Nat Rev Cancer 6(7):565–571

    Article  CAS  Google Scholar 

  27. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  CAS  Google Scholar 

  28. Rang HP (2006) Pharmacology: its role in drug discovery. In: Rang HP (ed) Drug discovery and development: technology in transition. Elsevier, Philadelphia

    Google Scholar 

  29. Hakimi A, Auluck J, Jones GD, Ng LL, Jones DJ (2014) Assessment of reproducibility in depletion and enrichment workflows for plasma proteomics using label-free quantitative data-independent LC-MS. Proteomics 14(1):4–13

    Article  CAS  Google Scholar 

  30. Institute Of Medicine (US) Forum On Drug Discovery, D. A. T (2009) Accelerating the development of biomarkers for drug safety: workshop summary. The National Academies Collection: reports funded by National Institutes of Health. National Academies Press (US), Washington

    Google Scholar 

  31. Jaffe JD, Keshishian H, Chang B, Addona TA, Gillette MA, Carr SA (2008) Accurate inclusion mass screening: a bridge from unbiased discovery to targeted assay development for biomarker verification. Mol Cell Proteomics 7(10):1952–1962

    Article  CAS  Google Scholar 

  32. Peters KE, Walters CC, Moldowan JM (2007) The biomarker guide: biomarkers and isotopes in the environment and human history, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  33. Kelleher NL (2004) Top-down proteomics. Anal Chem 76(11):197A–203A

    Article  Google Scholar 

  34. Krijgsveld J, Ketting RF, Mahmoudi T, Johansen J, Artal-Sanz M, Verrijzer CP, Plasterk RH, Heck AJ (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat Biotechnol 21(8):927–931

    Article  CAS  Google Scholar 

  35. Krishna R, Herman G, Wagner JA (2008) Accelerating drug development using biomarkers: a case study with sitagliptin, a novel DPP4 inhibitor for type 2 diabetes. AAPS J 10(2):401–409

    Article  CAS  Google Scholar 

  36. Li Q (2010) Assigning significance in label-free quantitative proteomics to include single-peptide-hit proteins with low replicates. Int J Proteomics 2010

    Google Scholar 

  37. Mahajan R, Gupta K (2010) Food and drug administration’s critical path initiative and innovations in drug development paradigm: challenges, progress, and controversies. J Pharm Bioallied Sci 2(4):307–313

    Article  Google Scholar 

  38. Marquette CA, Corgier BP, Blum LJ (2012) Recent advances in multiplex immunoassays. Bioanalysis 4(8):927–936

    Article  CAS  Google Scholar 

  39. Marrer E, Dieterle F (2010) Impact of biomarker development on drug safety assessment. Toxicol Appl Pharmacol 243(2):167–179

    Article  CAS  Google Scholar 

  40. Matthews PM, Rabiner EA, Passchier J, Gunn RN (2012) Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol 73(2):175–186

    Article  CAS  Google Scholar 

  41. Mazur MT, Cardasis HL, Spellman DS, Liaw A, Yates NA, Hendrickson RC (2010) Quantitative analysis of intact apolipoproteins in human HDL by top-down differential mass spectrometry. Proc Natl Acad Sci U S A 107(17):7728–7733

    Article  CAS  Google Scholar 

  42. Meng F, Wiener MC, Sachs JR, Burns C, Verma P, Paweletz CP, Mazur MT, Deyanova EG, Yates NA, Hendrickson RC (2007) Quantitative analysis of complex peptide mixtures using FTMS and differential mass spectrometry. J Am Soc Mass Spectrom 18(2):226–233

    Article  CAS  Google Scholar 

  43. Mor G, Visintin I, Lai Y, Zhao H, Schwartz P, Rutherford T, Yue L, Bray-Ward P, Ward DC (2005) Serum protein markers for early detection of ovarian cancer. Proc Natl Acad Sci U S A 102(21):7677–7682

    Article  CAS  Google Scholar 

  44. Motoyama A, Yates JR III (2008) Multidimensional LC separations in shotgun proteomics. Anal Chem 80(19):7187–7193

    Article  CAS  Google Scholar 

  45. Nesvizhskii AI (2010) A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics 73(11):2092–2123

    Article  CAS  Google Scholar 

  46. Nesvizhskii AI, Aebersold R (2004) Analysis, statistical validation and dissemination of large-scale proteomics datasets generated by tandem MS. Drug Discov Today 9(4):173–181

    Article  CAS  Google Scholar 

  47. Ng PC, Kirkness EF (2010) Whole genome sequencing. Methods Mol Biol 628:215–226

    Article  CAS  Google Scholar 

  48. O’Connor JP, Jackson A, Asselin MC, Buckley DL, Parker GJ, Jayson GC (2008) Quantitative imaging biomarkers in the clinical development of targeted therapeutics: current and future perspectives. Lancet Oncol 9(8):766–776

    Article  Google Scholar 

  49. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  Google Scholar 

  50. Ong SE, Foster LJ, Mann M (2003) Mass spectrometric-based approaches in quantitative proteomics. Methods 29(2):124–130

    Article  CAS  Google Scholar 

  51. Paweletz CP, Wiener MC, Bondarenko AY, Yates NA, Song Q, Liaw A, Lee AY, Hunt BT, Henle ES, Meng F, Sleph HF, Holahan M, Sankaranarayanan S, Simon AJ, Settlage RE, Sachs JR, Shearman M, Sachs AB, Cook JJ, Hendrickson RC (2010) Application of an end-to-end biomarker discovery platform to identify target engagement markers in cerebrospinal fluid by high resolution differential mass spectrometry. J Proteome Res 9(3):1392–1401

    Article  CAS  Google Scholar 

  52. Pratt JM, Petty J, Riba-Garcia I, Robertson DH, Gaskell SJ, Oliver SG, Beynon RJ (2002) Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics 1(8):579–591

    Article  CAS  Google Scholar 

  53. Rabilloud T (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2(1):3–10

    Article  CAS  Google Scholar 

  54. Rawlins MD (2004) Cutting the cost of drug development? Nat Rev Drug Discov 3(4):360–364

    Article  CAS  Google Scholar 

  55. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983

    Article  CAS  Google Scholar 

  56. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  CAS  Google Scholar 

  57. Sadygov RG, Liu H, Yates JR (2004) Statistical models for protein validation using tandem mass spectral data and protein amino acid sequence databases. Anal Chem 76(6):1664–1671

    Article  CAS  Google Scholar 

  58. Simon GM, Niphakis MJ, Cravatt BF (2013) Determining target engagement in living systems. Nat Chem Biol 9(4):200–205

    Article  CAS  Google Scholar 

  59. Siuti N, Kelleher NL (2007) Decoding protein modifications using top-down mass spectrometry. Nat Methods 4(10):817–821

    Article  CAS  Google Scholar 

  60. Snijders AP, De Vos MG, Wright PC (2005) Novel approach for peptide quantitation and sequencing based on 15N and 13C metabolic labeling. J Proteome Res 4(2):578–585

    Article  CAS  Google Scholar 

  61. Staes A, Demol H, Van Damme J, Martens L, Vandekerckhove J, Gevaert K (2004) Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J Proteome Res 3(4):786–791

    Article  CAS  Google Scholar 

  62. States DJ, Omenn GS, Blackwell TW, Fermin D, Eng J, Speicher DW, Hanash SM (2006) Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat Biotechnol 24(3):333–338

    Article  CAS  Google Scholar 

  63. Swatton JE, Prabakaran S, Karp NA, Lilley KS, Bahn S (2004) Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE). Mol Psychiatry 9(2):128–143

    Article  CAS  Google Scholar 

  64. Tello-Montoliu A, Marin F, Roldan V, Mainar L, Lopez MT, Sogorb F, Vicente V, Lip GY (2007) A multimarker risk stratification approach to non-ST elevation acute coronary syndrome: implications of troponin T, CRP, NT pro-BNP and fibrin D-dimer levels. J Intern Med 262(6):651–658

    Article  CAS  Google Scholar 

  65. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  Google Scholar 

  66. Tiller PR, Cunniff J, Land AP, Schwartz J, Jardine I, Wakefield M, Lopez L, Newton JF, Burton RD, Folk BM, Buhrman DL, Price P, Wu D (1997) Drug quantitation on a benchtop liquid chromatography-tandem mass spectrometry system. J Chromatogr A 771(1–2):119–125

    Article  CAS  Google Scholar 

  67. Villanueva J, Philip J, Entenberg D, Chaparro CA, Tanwar MK, Holland EC, Tempst P (2004) Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem 76(6):1560–1570

    Article  CAS  Google Scholar 

  68. Visscher PM, Brown MA, Mccarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90(1):7–24

    Article  CAS  Google Scholar 

  69. Wagner JA (2008) Strategic approach to fit-for-purpose biomarkers in drug development. Annu Rev Pharmacol Toxicol 48:631–651

    Article  CAS  Google Scholar 

  70. Whitelegge JP (2013) Integral membrane proteins and bilayer proteomics. Anal Chem 85(5):2558–2568

    Article  CAS  Google Scholar 

  71. Wieboldt R, Campbell DA, Henion J (1998) Quantitative liquid chromatographic-tandem mass spectrometric determination of orlistat in plasma with a quadrupole ion trap. J Chromatogr B Biomed Sci Appl 708(1–2):121–129

    Article  CAS  Google Scholar 

  72. Wong DF, Tauscher J, Grunder G (2009) The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology 34(1):187–203

    Article  CAS  Google Scholar 

  73. Wu CC, Maccoss MJ, Howell KE, Matthews DE, Yates JR III (2004) Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal Chem 76(17):4951–4959

    Article  CAS  Google Scholar 

  74. Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73(13):2836–2842

    Article  CAS  Google Scholar 

  75. Yost RA, Perchalski RJ, Brotherton HO, Johnson JV, Budd MB (1984) Pharmaceutical and clinical analysis by tandem mass spectrometry. Talanta 31(10 Pt 2):929–935

    Article  CAS  Google Scholar 

  76. Zanivan S, Krueger M, Mann M (2012) In vivo quantitative proteomics: the SILAC mouse. Methods Mol Biol 757:435–450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Spellman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miller, R.A., Spellman, D.S. (2014). Mass Spectrometry-Based Biomarkers in Drug Development. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 806. Springer, Cham. https://doi.org/10.1007/978-3-319-06068-2_16

Download citation

Publish with us

Policies and ethics