Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 700 Accesses

Abstract

As stated in the introduction, the present thesis is based on a combination of reversible-deactivation radical polymerization via the RAFT process and supramolecular CD host/guest complexes. The RAFT process provides the opportunity to generate polymers with specific endgroups, e.g. guest functionalities for CD. These polymers can subsequently be exploited for the formation of novel complex macromolecular architectures, e.g. block copolymers, star polymers or miktoarm star polymers. The underlying theoretical background is described in the following sections as well as an overview of CD mediated complex macromolecular architectures that have been published in the literature so far.

Parts of this chapter were reproduced with permission from Schmidt et al. [1]. Copyright 2014 Elsevier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt BVKJ, Hetzer M, Ritter H, Barner-Kowollik C (2014) Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog Polym Sci 39(1):235–249. doi:10.1016/j.progpolymsci.2013.09.006

  2. Szwarc M (1983) Living polymers and mechanisms of anionic polymerization. Advances in polymer science, vol 49. Springer, Berlin

    Google Scholar 

  3. Hsieh HL, Quirk RP (1996) Anionic polymerization: principles and practical applications, 1st edn. Marcel Dekker, New York

    Google Scholar 

  4. Moad G, Rizzardo E, Thang SH (2008) Toward living radical polymerization. Acc Chem Res 41:1133–1142

    CAS  Google Scholar 

  5. Szwarc M (1993) Ionic polymerization and living polymers, 1st edn. Chapman & Hall, New York

    Google Scholar 

  6. Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    CAS  Google Scholar 

  7. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146

    CAS  Google Scholar 

  8. Ouchi M, Terashima T, Sawamoto M (2009) Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev 109:4963–5050

    CAS  Google Scholar 

  9. Solomon DH, Rizzardo E, Cacioli P (1986) US Patent US4581429

    Google Scholar 

  10. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688

    Google Scholar 

  11. Grubbs RB (2011) Nitroxide-mediated radical polymerization: limitations and versatility. Polym Rev 51:104–137

    CAS  Google Scholar 

  12. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition/fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562

    CAS  Google Scholar 

  13. Barner-Kowollik C (2008) Handbook of RAFT-polymerization. Wiley-VCH, Weinheim

    Google Scholar 

  14. Barner-Kowollik C, Perrier SJ (2008) The future of reversible addition fragmentation chain transfer polymerization. Polym Sci Part A: Polym Chem 46:5715–5723

    Google Scholar 

  15. Moad G, Rizzardo E, Thang SH (2008) Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49:1079–1131

    CAS  Google Scholar 

  16. Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process—a second update. Aust J Chem 62:1402–1472

    CAS  Google Scholar 

  17. Odian G (2004) Principles of polymerization, 4th edn. Wiley, New York

    Google Scholar 

  18. Le TP, Moad G, Rizzardo E, Thang SH (1998) International Patent WO9801478

    Google Scholar 

  19. Corpart P, Charmot D, Biadatti T, Zard SZ, Michelet D (1998) International Patent WO9858974

    Google Scholar 

  20. Chiefari J, Mayadunne RTA, Moad CL, Moad G, Rizzardo E, Postma A, Skidmore MA, Thang SH (2003) Thiocarbonylthio compounds (SdC(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Effect of the activating Group Z. Macromolecules 36:2273–2283

    Google Scholar 

  21. Chong YK, Krstina J, Le TPT, Moad G, Postma A, Rizzardo E, Thang SH (2003) Thiocarbonylthio compounds [SdC(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving Group (R). Macromolecules 36:2256–2272

    CAS  Google Scholar 

  22. Perrier S, Takolpuckdee PJ (2005) Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/xanthates (madix) polymerization. Polym Sci Part A: Polym Chem 43:5347–5393

    Google Scholar 

  23. Barner-Kowollik C, Buback M, Charleux B, Coote ML, Drache M, Fukuda T, Goto A, Klumperman B, Lowe AB, Mcleary JB, Moad G, Monteiro MJ, Sanderson RD, Tonge MP, Vana PJ (2006) Mechanism and kinetics of dithiobenzoate-mediated RAFT polymerization. I. The current situation. Polym Sci Part A: Polym Chem 44:5809–5831

    Google Scholar 

  24. Moad G, Chiefari J, Chong Y, Krstina J, Mayadunne RT, Postma A, Rizzardo E, Thang SH (2000) Living free radical polymerization with reversible addition—fragmentation chain transfer (the life of RAFT). Polym Int 49:993–1001

    Google Scholar 

  25. Mori H, Ookuma H, Nakano S, Endo T (2006) Xanthate-mediated controlled radical polymerization of N-Vinylcarbazole. Macromol Chem Phys 207:1005–1017

    CAS  Google Scholar 

  26. Stenzel-Rosenbaum M, Davis TP, Chen V, Fane AGJ (2001) Star-polymer synthesis via radical reversible addition-fragmentation chain-transfer polymerization. Polym Sci Part A: Polym Chem 39:2777–2783

    Google Scholar 

  27. Quinn JF, Barner L, Barner-Kowollik C, Rizzardo E, Davis TP (2002) Reversible addition-fragmentation chain transfer polymerization initiated with ultraviolet radiation. Macromolecules 35:7620–7627

    CAS  Google Scholar 

  28. Hongand C-Y, You Y-Z, Bai R-K, Pan C-Y, Borjihan GJ (2001) Controlled polymerization of acrylic acid under 60Co irradiation in the presence of dibenzyl trithiocarbonate. Polym Sci Part A: Polym Chem 33:3934–3939

    Google Scholar 

  29. Chen G, Zhu X, Zhu J, Cheng Z (2004) Plasma-initiated controlled/living radical polymerization of methyl methacrylate in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN). Macromol Rapid Commun 25:818–824

    CAS  Google Scholar 

  30. Lowe AB, McCormick CL (2007) Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog Polym Sci 32:283–351

    CAS  Google Scholar 

  31. Mitsukami Y, Donovan MS, Lowe AB, McCormick CL (2001) Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules 34:2248–2256

    CAS  Google Scholar 

  32. Sumerlin BS, Donovan MS, Mitsukami Y, Lowe AB, McCormick CL (2001) Water-soluble polymers. 84. Controlled polymerization in aqueous media of anionic acrylamido monomers via RAFT. Macromolecules 34:6561–6564

    CAS  Google Scholar 

  33. Rodriguez-Emmenegger C, Schmidt BVKJ, Sedlakova Z, Subr V, Alles AB, Brynda E, Barner-Kowollik C (2011) Low temperature aqueous living/controlled (RAFT) polymerization of carboxybetaine methacrylamide up to high molecular weights. Macromol Rapid Commun 32:958–965

    CAS  Google Scholar 

  34. Convertine AJ, Lokitz BS, Lowe AB, Scales CW, Myrick LJ, McCormick CL (2005) Aqueous RAFT polymerization of acrylamide and N,N-Dimethylacrylamide at room temperature. Macromol Rapid Commun 26:791–795

    CAS  Google Scholar 

  35. Thomas DB, Convertine AJ, Hester RD, Lowe AB, McCormick CL (2004) Hydrolytic susceptibility of dithioester chain transfer agents and implications in aqueous RAFT polymerizations. Macromolecules 37:1735–1741

    CAS  Google Scholar 

  36. Levesque G, Arséne P, Fanneau-Bellenger V, Pham T-N (2000) Protein thioacylation: 2. Reagent stability in aqueous media and thioacylation kinetics. Biomacromolecules 1:400–406

    CAS  Google Scholar 

  37. Thomas DB, Convertine AJ, Myrick LJ, Scales CW, Smith AE, Lowe AB, Vasilieva YA, Ayres N, McCormick CL (2004) Kinetics and molecular weight control of the polymerization of acrylamide via RAFT. Macromolecules 37:8941–8950

    CAS  Google Scholar 

  38. Thomas DB, Sumerlin BS, Lowe AB, McCormick CL (2003) Conditions for facile, controlled RAFT polymerization of acrylamide in water. Macromolecules 36:1436–1439

    CAS  Google Scholar 

  39. Smith AE, Xu X, McCormick CL (2010) Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Prog Polym Sci 35:45–93

    CAS  Google Scholar 

  40. Millard P-E, Barner L, Stenzel MH, Davis TP, Barner-Kowollik C, Müller AHE (2006) RAFT polymerization of N-Isopropylacrylamide and acrylic acid under-irradiation in aqueous media. Macromol Rapid Commun 27:821–828

    CAS  Google Scholar 

  41. Convertine AJ, Sumerlin BS, Thomas DB, Lowe AB, McCormick CL (2003) Synthesis of block copolymers of 2- and 4-vinylpyridine by RAFT polymerization. Macromolecules 36:4679–4681

    Google Scholar 

  42. Yuan J-J, Ma R, Gao Q, Wang Y-F, Cheng S-Y, Feng L-X, Fan Z-Q, Jiang L (2003) Synthesis and characterization of polystyrene/poly(4-vinylpyridine) triblock copolymers by reversible addition fragmentation chain transfer polymerization and their self-assembled aggregates in water. J Appl Polym Sci 89:1017–1025

    Google Scholar 

  43. Sahnoun M, Charreyre M-T, Veron L, Delair T, D’Agosto FJ (2005) Synthetic and characterization aspects of dimethylaminoethyl methacrylate reversible addition fragmentation chain transfer (RAFT) polymerization. Polym Sci Part A: Polym Chem 43:3551–3565

    Google Scholar 

  44. Xiong Q, Ni P, Zhang F, Yu Z (2004) Synthesis and characterization of 2-(dimethylamino)ethyl methacrylate homopolymers via aqueous RAFT polymerization and their application in miniemulsion polymerization. Polym Bull 53:1–8

    CAS  Google Scholar 

  45. Donovan MS, Sumerlin BS, Lowe AB, McCormick CL (2002) Controlled/Living polymerization of sulfobetaine monomers directly in aqueous media via RAFT. Macromolecules 35:8663–8666

    CAS  Google Scholar 

  46. Delaittre G, Rieger J, Charleux B (2011) Nitroxide-mediated living/controlled radical polymerization of N,N-diethylacrylamide. Macromolecules 44:462–470

    CAS  Google Scholar 

  47. Convertine AJ, Lokitz BS, Vasileva Y, Myrick LJ, Scales CW, Lowe AB, McCormick CL (2006) Direct synthesis of thermally responsive DMA/NIPAM diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization. Macromolecules 39:1724–1730

    CAS  Google Scholar 

  48. Scales CW, Vasilieva YA, Convertine AJ, Lowe AB, McCormick CL (2005) Direct, controlled synthesis of the nonimmunogenic, hydrophilic polymer, poly(N-(2-hydroxypropyl)methacrylamide) via RAFT in aqueous media. Biomacromolecules 6:1846–1850

    CAS  Google Scholar 

  49. Barner L, Davis TP, Stenzel MH, Barner-Kowollik C (2007) Complex macromolecular architectures by reversible addition fragmentation chain transfer chemistry: theory and practice. Macromol Rapid Commun 28:539–559

    CAS  Google Scholar 

  50. Quémener D, Davis TP, Barner-Kowollik C, Stenzel MH (2006) RAFT and click chemistry: A versatile approach to well-defined block copolymers. Chem Commun 5051–5053

    Google Scholar 

  51. Gondi SR, Vogt AP, Sumerlin BS (2007) Versatile pathway to functional telechelics via RAFT polymerization and click chemistry. Macromolecules 40:474–481

    Google Scholar 

  52. Postma A, Davis TP, Evans RA, Li G, Moad G, O’Shea MS (2006) Synthesis of well-defined polystyrene with primary amine end groups through the use of phthalimido-functional RAFT agents. Macromolecules 39:5293–5306

    CAS  Google Scholar 

  53. Liu J, Hong C-Y, Pan C-Y (2004) Dihydroxyl-terminated telechelic polymers prepared by RAFT polymerization using functional trithiocarbonate as chain transfer agent. Polymer 45:4413–4421

    CAS  Google Scholar 

  54. Lima V, Jiang X, Brokken-Zijp J, Schoenmakers PJ, Klumperman B, Linde RVDJ (2005) Synthesis and characterization of telechelic polymethacrylates via RAFT polymerization. Polym Sci Part A: Polym Chem 43:959–973

    Google Scholar 

  55. Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756

    CAS  Google Scholar 

  56. Lutz JF (2007) 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025

    CAS  Google Scholar 

  57. Barner-Kowollik C, Inglis AJ (2009) Has click chemistry lead to a paradigm shift in polymer material design? Macromol Chem Phys 210:987–992

    CAS  Google Scholar 

  58. Kempe K, Krieg A, Becer CR, Schubert US (2012) “Clicking” on/with polymers: a rapidly expanding field for the straightforward preparation of novel macromolecular architectures. Chem Soc Rev 41:176–191

    CAS  Google Scholar 

  59. Barner-Kowollik C, Du Prez FE, Espeel P, Hawker CJ, Junkers T, Schlaad H, Van Camp W (2011) “Clicking” polymers or just efficient linking: what is the difference? Angew Chem Int Ed 50:60–62

    CAS  Google Scholar 

  60. Perrier S, Takolpuckdee P, Mars CA (2005) Macromolecular design via reversible addition—fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. Macromolecules 38:2033–2036

    CAS  Google Scholar 

  61. Llauro M, Loiseau J, Boisson F, Delolme F, Ladavière C, Claverie JJ (2004) Unexpected end-groups of poly(acrylic acid) prepared by RAFT polymerization. Polym Sci Part A: Polym Chem 42:5439–5462

    Google Scholar 

  62. Lowe AB, Sumerlin BS, Donovan MS, McCormick CL (2002) Facile preparation of transition metal nanoparticles stabilized by well-defined (co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization. J Am Chem Soc 124:11562–11563

    CAS  Google Scholar 

  63. Vana P, Albertin L, Barner L, Davis TP, Barner-Kowollik CJ (2002) Reversible addition–fragmentation chain-transfer polymerization: unambiguous end-group assignment via electrospray ionization mass spectrometry. Polym Sci Part A: Polym Chem 40:4032–4037

    Google Scholar 

  64. Lu L, Zhang H, Yang N, Cai Y (2006) Toward rapid and well-controlled ambient temperature RAFT polymerization under UV-Vis radiation: effect of radiation wave range. Macromolecules 39:3770–3776

    CAS  Google Scholar 

  65. Mayadunne RTA, Rizzardo E, Chiefari J, Krstina J, Moad G, Postma A, Thang SH (2000) Living polymers by the use of trithiocarbonates as reversible addition/fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps. Macromolecules 33:243–245

    CAS  Google Scholar 

  66. Benaglia M, Chiefari J, Chong YK, Moad G, Rizzardo E, Thang SH (2009) Universal (Switchable) RAFT agents. J Am Chem Soc 131:6914–6915

    CAS  Google Scholar 

  67. Bernard J, Favier A, Zhang L, Nilasaroya A, Davis TP, Barner-Kowollik C, Stenzel MH (2005) Poly(vinyl ester) star polymers via xanthate-mediated living radical polymerization: from poly(vinyl alcohol) to glycopolymer stars. Macromolecules 38:5475–5484

    CAS  Google Scholar 

  68. Mayadunne RTA, Jeffery J, Moad G, Rizzardo E (2003) Living free radical polymerization with reversible addition/fragmentation chain transfer (RAFT polymerization): approaches to star polymers. Macromolecules 36:1505–1513

    CAS  Google Scholar 

  69. Stenzel MH, Zhang L, Huck WTS (2006) Temperature-responsive glycopolymer brushes synthesized via RAFT polymerization using the Z-Group approach. Macromol Rapid Commun 27:1121–1126

    Google Scholar 

  70. Darcos V, Duréault A, Taton D, Gnanou Y, Marchand P, Caminade A-M, Majoral J-P, Destarac M, Leising F (2004) Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chem Commun 2110–2111

    Google Scholar 

  71. Mertoglu M, Laschewsky A, Skrabania K, Wieland C (2005) New water soluble agents for reversible addition/fragmentation chain transfer polymerization and their application in aqueous solutions. Macromolecules 38:3601–3614

    CAS  Google Scholar 

  72. Lehn JM (1978) Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc Chem Res 11:49–57

    CAS  Google Scholar 

  73. Lehn J-M (1988) Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew Chem Int Ed 27:89–112

    Google Scholar 

  74. Lehn J-M (1995) Supramolecular chemistry. Wiley VCH, Weinheim

    Google Scholar 

  75. Lehn J-M (2005) In: Ciferri A (ed) Supramolecular polymers. CRC Press, Boca Raton, Chap. 1, p 3

    Google Scholar 

  76. Steed JW, Atwood JL (2009) Supramolecular chemistry. Wiley, New York

    Google Scholar 

  77. Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97:1325–1358

    CAS  Google Scholar 

  78. Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59:609–617

    CAS  Google Scholar 

  79. Sänger W (1980) Cyclodextrin-einschlussverbindungen in forschung und industrie. Angew Chem 92:343–361

    Google Scholar 

  80. van Etten RL, Clowes GA, Sebastian JF, Bender ML (1967) The mechanism of the cycloamylose-accelerated cleavage of phenyl esters. J Am Chem Soc 89:3253–3262

    Google Scholar 

  81. da Silva WA, Rodrigues MT, Shankaraiah N, Ferreira RB, Andrade CKZ, Pilli RA, Santos LS (2009) Novel supramolecular palladium catalyst for the asymmetric reduction of imines in aqueous media. Org Lett 11:3238–3241

    Google Scholar 

  82. Zhou J, Ritter H (2010) Cyclodextrin functionalized polymers as drug delivery systems. Polym Chem 1:1552–1559

    CAS  Google Scholar 

  83. Loftsson T, Jarho P, Màsson M, Järvinen T (2005) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2:335–351

    CAS  Google Scholar 

  84. Szejtli J (1997) Utilization of cyclodextrins in industrial products and processes. J Mater Chem 7:575–587

    CAS  Google Scholar 

  85. Nishi H, Fukuyama T, Terabe SJ (1991) Chiral separation by cyclodextrin-modified micellar electrokinetic chromatography. Chrom A 553:503–516

    CAS  Google Scholar 

  86. Szente L, Szejtli J (2004) Cyclodextrins as food ingredients. Trends Food Sci Technol 15:137–142

    CAS  Google Scholar 

  87. Dodziuk H (2006) In: Dodziuk H (ed) Cyclodextrins and their complexes. Wiley VCH, Weinheim, Chap. 1, pp 1–26

    Google Scholar 

  88. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Google Scholar 

  89. Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044

    CAS  Google Scholar 

  90. Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85:1017–1025

    CAS  Google Scholar 

  91. Kaya E, Mathias LJJ (2010) Synthesis and characterization of physical crosslinking systems based on cyclodextrin inclusion/host-guest complexation. Polym Sci Part A: Polym Chem 48:581–592

    Google Scholar 

  92. Cramer F, Sänger W, Spatz H-C (1967) Inclusion compounds. XIX.1a the formation of inclusion compounds of \(\rm {\hat{I}}{\pm }\)-cyclodextrin in aqueous solutions. Thermodynamics and kinetics. J Am Chem Soc 89:14–20

    Google Scholar 

  93. Schneider H-J, Hacket F, Rüdiger V, Ikeda H (1998) NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98:1755–1786

    CAS  Google Scholar 

  94. Béni S, Szakács Z, Csernák O, Barcza L, Noszál B (2007) Cyclodextrin/imatinib complexation: binding mode and charge dependent stabilities. Eur J Pharm Sci 30:167–174

    Google Scholar 

  95. Zhang Y, Liu Y, Liu W, Gan Y, Zhou C (2010) Characterization of the inclusion complex of beta-cyclodextrin with sorbic acid in the solid state and in aqueous solution. J Incl Phenom Macrocycl Chem 67:177–182

    CAS  Google Scholar 

  96. Guo P, Su Y, Cheng Q, Pan Q, Li H (2011) Crystal structure determination of the beta-cyclodextrin/p-aminobenzoic acid inclusion complex from powder X-ray diffraction data. Carbohydr Res 346:986–990

    CAS  Google Scholar 

  97. Ivanov PM, Salvatierra D, Jaime C (1996) Experimental (NMR) and computational (MD) studies on the inclusion complexes of 1-bromoadamantane with alpha, beta, and gamma-cyclodextrin. J Org Chem 61:7012–7017

    CAS  Google Scholar 

  98. Chen B, Liu KL, Zhang Z, Ni X, Goh SH, Li J (2012) Supramolecular hydrogels formed by pyrene-terminated poly(ethylene glycol) star polymers through inclusion complexation of pyrene dimers with [gamma]-cyclodextrin. Chem Commun 48:5638–5640

    CAS  Google Scholar 

  99. Yorozu T, Hoshino M, Imamura M (1982) Fluorescence studies of pyrene inclusion complexes with .alpha.-, beta.-, and .gamma.-cyclodextrins in aqueous solutions. Evidence for formation of pyrene dimer in.gamma.-cyclodextrin cavity. J Phys Chem 86:4426–4429

    Google Scholar 

  100. Cruz JR, Becker BA, Morris KF, Larive CK (2008) NMR characterization of the host/guest inclusion complex between beta-cyclodextrin and doxepin. Magn Reson Chem 46:838–845

    CAS  Google Scholar 

  101. Wenz G, Han B-H, Müller A (2006) Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev 106:782–817

    CAS  Google Scholar 

  102. Zhao Y-L, Dichtel WR, Trabolsi A, Saha S, Aprahamian I, Stoddart JF (2008) A redox-switchable alpha-cyclodextrin-based [2] rotaxane. J Am Chem Soc 130:11294–11296

    CAS  Google Scholar 

  103. Armspach D, Ashton PR, Ballardini R, Balzani V, Godi A, Moore CP, Prodi L, Spencer N, Stoddart JF, Tolley MS, Wear TJ, Williams DJ (1995) Catenated cyclodextrins. Chem Eur J 1:31–55

    Google Scholar 

  104. Harada A, Kamachi M (1990) Complex formation between poly(ethylene glycol) and alpha-cyclodextrin. Macromolecules 23:2821–2823

    CAS  Google Scholar 

  105. Harada A, Okada M, Li J, Kamachi M (1995) Preparation and characterization of inclusion complexes of poly(propylene glycol) with cyclodextrins. Macromolecules 28:8406–8411

    CAS  Google Scholar 

  106. Harada A, Li J, Nakamitsu T, Kamachi M (1993) Preparation and characterization of polyrotaxanes containing many threaded .alpha.-cyclodextrins. J Org Chem 58:7524–7528

    Google Scholar 

  107. He L, Huang J, Chen Y, Xu X, Liu L (2005) Inclusion interaction of highly densely PEO grafted polymer brush and alpha-cyclodextrin. Macromolecules 38:3845–3851

    CAS  Google Scholar 

  108. Born M, Ritter H (1995) Side-chain polyrotaxanes with a tandem structure based on cyclodextrins and a polymethacrylate main chain. Angew Chem Int Ed 34:309–311

    CAS  Google Scholar 

  109. Gibson HW, Ge Z, Jones JW, Harich K, Pederson A, Dorn HCJ (2009) Supramacromolecular chemistry: Self-assembly of polystyrene-based multi-armed pseudorotaxane star polymers from multi-topic C60 derivatives. Polym Sci Part A: Polym Chem 47:6472–6495

    Google Scholar 

  110. Sabadini E, Cosgrove T (2003) Inclusion complex formed between star-poly(ethylene glycol) and cyclodextrins. Langmuir 19:9680–9683

    CAS  Google Scholar 

  111. Harada A, Takashima Y, Yamaguchi H (2009) Cyclodextrin-based supramolecular polymers. Chem Soc Rev 38:875–882

    CAS  Google Scholar 

  112. Liao X, Chen G, Liu X, Chen W, Chen F, Jiang M (2010) Photoresponsive pseudopolyrotaxane hydrogels based on competition of host–guest interactions. Angew Chem Int Ed 49:4409–4413

    CAS  Google Scholar 

  113. De Bo G, De Winter J, Gerbaux P, Fustin C-A (2011) Rotaxane-based mechanically linked block copolymers. Angew Chem Int Ed 50:9093–9096

    Google Scholar 

  114. Stoll RS, Friedman DC, Stoddart JF (2011) Mechanically interlocked mechanophores by living-radical polymerization from rotaxane initiators. Org Lett 13:2706–2709

    CAS  Google Scholar 

  115. Houk KN, Leach AG, Kim SP, Zhang X (2003) Binding affinities of host/uest, protein/ligand, and protein/transition-state complexes. Angew Chem Int Ed 42:4872–4897

    CAS  Google Scholar 

  116. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707

    CAS  Google Scholar 

  117. Kuntz ID, Gasparro FP, Johnston MD, Taylor RP (1968) Molecular interactions and the benesi-hildebrand equation. J Am Chem Soc 90:4778–4781

    CAS  Google Scholar 

  118. Yang C, Liu L, Mu T-W, Guo Q-X (2000) The performance of the benesi-hildebrand method in measuring the binding constants of the cyclodextrin complexation. Anal Sci 16:537–539

    CAS  Google Scholar 

  119. Tomatsu I, Hashidzume A, Harada A (2005) Photoresponsive hydrogel system using molecular recognition of alpha-cyclodextrin. Macromolecules 38:5223–5227

    CAS  Google Scholar 

  120. Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A (2010) Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem Int Ed 49:7461–7464

    CAS  Google Scholar 

  121. Lewis EA, Hansen LD (1973) Thermodynamics of binding of guest molecules to \(\alpha \)- and \(\beta \)-cyclodextrins. J Chem Soc, Perkin Trans 2:2081–2085

    Google Scholar 

  122. Miyaji T, Kurono Y, Uekama K, Ikeda K (1976) Simultaneous determination of complexation equilibrium constants for conjugated guest species by extended potentiometric titration method: on barbiturate-\(\beta \)-cyclodextrin system. Chem Pharm Bull 24:1155–1159

    CAS  Google Scholar 

  123. Takashima Y, Nakayama T, Miyauchi M, Kawaguchi Y, Yamaguchi H, Harada A (2004) Complex formation and gelation between copolymers containing pendant azobenzene groups and cyclodextrin polymers. Chem Lett 33:890–891

    CAS  Google Scholar 

  124. Höfler T, Wenz G (1996) Determination of binding energies between cyclodextrins and aromatic guest molecules by microcalorimetry. J Incl Phenom Macrocycl Chem 25:81–84

    Google Scholar 

  125. Boger J, Corcoran RJ, Lehn J-M (1978) Cyclodextrin chemistry. Selective modification of all primary hydroxyl groups of alpha- and beta-cyclodextrins. Helv Chim Acta 61:2190–2218

    CAS  Google Scholar 

  126. Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98:1977–1996

    CAS  Google Scholar 

  127. Tang W, Ng S-C (2008) Facile synthesis of mono-6-amino-6-deoxy-alpha-, beta-, gamma-cyclodextrin hydrochlorides for molecular recognition, chiral separation and drug delivery. Nat Protoc 3:691–697

    CAS  Google Scholar 

  128. Hamasaki K, Ikeda H, Nakamura A, Ueno A, Toda F, Suzuki I, Osa T (1993) Fluorescent sensors of molecular recognition. Modified cyclodextrins capable of exhibiting guest-responsive twisted intramolecular charge transfer fluorescence. J Am Chem Soc 115:5035–5040

    CAS  Google Scholar 

  129. Melton LD, Slessor KN (1971) Synthesis of monosubstitutet cyclodehaxamaylososes. Carbohydr Res 18:29–37

    CAS  Google Scholar 

  130. Quan C-Y, Chen J-X, Wang H-Y, Li C, Chang C, Zhang X-Z, Zhuo R-X (2010) Core/Shell nanosized assemblies mediated by the alpha/beta cyclodextrin dimer with a tumor-triggered targeting property. ACS Nano 4:4211–4219

    CAS  Google Scholar 

  131. Amajjahe S, Choi S, Munteanu M, Ritter H (2008) Pseudopolyanions based on poly(NIPAAM-co-Beta-Cyclodextrin Methacrylate) and ionic liquids. Angew Chem Int Ed 47:3435–3437

    CAS  Google Scholar 

  132. Kuzuya A, Ohnishi T, Wasano T, Nagaoka S, Sumaoka J, Ihara T, Jyo A, Komiyama M (2009) Efficient guest inclusion by beta-cyclodextrin attached to the ends of DNA oligomers upon hybridization to various DNA conjugates. Bioconjug Chem 20:1643–1649

    CAS  Google Scholar 

  133. Bonomo RP, Cucinotta V, Impellizzeri FDAG, Maccarrone G, Rizzarelli E, Vecchio GJ (1993) Coordination properties of 6-deoxy-6-[1-(2-amino) ethylamino]-beta-cyclodextrin and the ability of its copper(II) complex to recognize and separate amino acid enantiomeric pairs. Incl Phenom Mol Recogn 15:167–180

    CAS  Google Scholar 

  134. Fujita K, Ueda T, Imoto T, Tabushi I, Toh N, Koga T (1982) Guest-induced conformational change of \(\beta \)-cyclodextrin capped with an environmentally sensitive chromophore. Bioorg Chem 11:72–84

    CAS  Google Scholar 

  135. Huan X, Wang D, Dong R, Tu C, Zhu B, Yan D, Zhu X (2012) Supramolecular ABC miktoarm star terpolymer based on host/guest inclusion complexation. Macromolecules 45:5941–5947

    CAS  Google Scholar 

  136. Yhaya F, Binauld S, Callari M, Stenzel MH (2012) One-pot endgroup-modification of hydrophobic RAFT polymers with cyclodextrin by thiol-ene chemistry and the subsequent formation of dynamic core/shell nanoparticles using supramolecular host/guest chemistry. Aust J Chem 65:1095–1103

    CAS  Google Scholar 

  137. Giacomelli C, Schmidt V, Putaux J-L, Narumi A, Kakuchi T, Borsali R (2009) Aqueous self-assembly of polystyrene chains end-functionalized with beta-cyclodextrin. Biomacromolecules 10:449–453

    CAS  Google Scholar 

  138. Liu H, Zhang Y, Hu J, Li C, Liu S (2009) Multi-responsive supramolecular double hydrophilic diblock copolymer driven by host-guest inclusion complexation between beta-cyclodextrin and adamantyl moieties. Macromol Chem Phys 210:2125–2137

    CAS  Google Scholar 

  139. Cai T, Yang WJ, Zhang Z, Zhu X, Neoh K-G, Kang E-T (2012) Preparation of stimuli-responsive hydrogel networks with threaded \(\beta \)-cyclodextrin end-capped chains via combination of controlled radical polymerization and click chemistry. Soft Matter 8:5612–5620

    CAS  Google Scholar 

  140. Bertrand A, Stenzel M, Fleury E, Bernard J (2012) Host-guest driven supramolecular assembly of reversible comb-shaped polymers in aqueous solution. Polym Chem 3:377–383

    CAS  Google Scholar 

  141. Martina K, Trotta F, Robaldo B, Belliardi N, Jicsinszky L, Cravotto G (2007) Efficient regioselective functionalizations of cyclodextrins carried out under microwaves or power ultrasound. Tetrahedron Lett 48:9185–9189

    CAS  Google Scholar 

  142. Casati C, Franchi P, Pievo R, Mezzina E, Lucarini M (2012) Unraveling unidirectional threading of alpha-cyclodextrin in a [2]rotaxane through spin labeling approach. J Am Chem Soc 134:19108–19117

    CAS  Google Scholar 

  143. Zeng J, Shi K, Zhang Y, Sun X, Zhang B (2008) Construction and micellization of a noncovalent double hydrophilic block copolymer. Chem Commun 3753–3755

    Google Scholar 

  144. Stadermann J, Komber H, Erber M, Däbritz F, Ritter H, Voit B (2011) Diblock copolymer formation via self-assembly of cyclodextrin. Macromolecules 44:3250–3259

    CAS  Google Scholar 

  145. Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin Y (2010) Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J Am Chem Soc 132:9268–9270

    CAS  Google Scholar 

  146. Yan Q, Xin Y, Zhou R, Yin Y, Yuan J (2011) Light-controlled smart nanotubes based on the orthogonal assembly of two homopolymers. Chem Commun 47:9594–9596

    CAS  Google Scholar 

  147. Peng L, Feng A, Zhang H, Wang H, Jian C, Liu B, Gao W, Yuan J (2014) Voltage-responsive micelles based on the assembly of two biocompatible homopolymers. Polym Chem 5:1751–1759

    Google Scholar 

  148. Zhang Z, Ding J, Chen X, Xiao C, He C, Zhuang X, Chen L, Chen X (2013) Intracellular pH-sensitive supramolecular amphiphiles based on host-guest recognition between benzimidazole and beta-cyclodextrin as potential drug delivery vehicles. Polym Chem 4:3265–3271

    CAS  Google Scholar 

  149. Rao J, Paunescu E, Mirmohades M, Gadwal I, Khaydarov A, Hawker CJ, Bang J, Khan A (2012) Supramolecular mimics of phase separating covalent diblock copolymers. Polym Chem 3:2050–2056

    CAS  Google Scholar 

  150. Ren S, Chen D, Jiang MJ (2009) Noncovalently connected micelles based on a beta-cyclodextrin-containing polymer and adamantane end-capped poly(epsilon-caprolactone) via host/guest interactions. Polym Sci Part A: Polym Chem 47:4267–4278

    Google Scholar 

  151. Yan J, Zhang X, Li W, Zhang X, Liu K, Wu P, Zhang A (2012) Thermoresponsive supramolecular dendronized copolymers with tunable phase transition temperatures. Soft Matter 8:6371–6377

    CAS  Google Scholar 

  152. Moers C, Nuhn L, Wissel M, Stangenberg R, Mondeshki M, Berger-Nicoletti E, Thomas A, Schaeffel D, Koynov K, Klapper M, Zentel R, Frey H (2013) Supramolecular linear-g-hyperbranched graft polymers: topology and binding strength of hyperbranched side chains. Macromolecules 46:9544–9553

    CAS  Google Scholar 

  153. Hetzer M, Fleischmann C, Schmidt BV, Barner-Kowollik C, Ritter H (2013) Visual recognition of supramolecular graft polymer formation via phenolphthalein/cyclodextrin association. Polymer 54:5141–5147

    CAS  Google Scholar 

  154. Feng A, Yan Q, Zhang H, Peng L, Yuan J (2014) Electrochemical redox responsive polymeric micelles formed from amphiphilic supramolecular brushes. Chem Commun doi:10.1039/C4CC00463A

  155. Zhao Q, Wang S, Cheng X, Yam RCM, Kong D, Li RKY (2010) Surface modification of cellulose fiber via supramolecular assembly of biodegradable polyesters by the aid of host/guest inclusion complexation. Biomacromolecules 11:1364–1369

    CAS  Google Scholar 

  156. Huskens J, Deij MA, Reinhoudt DN (2002) Attachment of molecules at a molecular printboard by multiple host/guest interactions. Angew Chem Int Ed 41:4467–4471

    CAS  Google Scholar 

  157. Auletta T et al (2004) Writing patterns of molecules on molecular printboards. Angew Chem Int Ed 43:369–373

    CAS  Google Scholar 

  158. Hsu S-H, Yilmaz MD, Blum C, Subramaniam V, Reinhoudt DN, Velders AH, Huskens J (2009) Expression of sensitized Eu3+ luminescence at a multivalent interface. J Am Chem Soc 131:12567–12569

    CAS  Google Scholar 

  159. González-Campo A, Hsu S-H, Puig L, Huskens J, Reinhoudt DN, Velders AH (2010) Orthogonal covalent and noncovalent functionalization of cyclodextrin-alkyne patterned surfaces. J Am Chem Soc 132:11434–11436

    Google Scholar 

  160. Ludden MJW, Mulder A, Tampé R, Reinhoudt DN, Huskens J (2007) Molecular printboards as a general platform for protein immobilization: a supramolecular solution to nonspecific adsorption. Angew Chem Int Ed 46:4104–4107

    CAS  Google Scholar 

  161. Uhlenheuer DA, Wasserberg D, Haase C, Nguyen HD, Schenkel JH, Huskens J, Ravoo BJ, Jonkheijm P, Brunsveld L (2012) Directed supramolecular surface assembly of SNAP-tag fusion proteins. Chem Eur J 18:6788–6794

    CAS  Google Scholar 

  162. Gong Y-H, Li C, Yang J, Wang H-Y, Zhuo R-X, Zhang X-Z (2011) Photoresponsive smart template via host/guest interaction for reversible cell adhesion. Macromolecules 44:7499–7502

    CAS  Google Scholar 

  163. Ohno K, Wong B, Haddleton DMJ (2001) Synthesis of well-defined cyclodextrin-core star polymers. Polym Sci Part A: Polym Chem 39:2206–2214

    Google Scholar 

  164. Stenzel-Rosenbaum MH, Davis TP, Chen V, Fane AG (2001) Synthesis of poly(styrene) star polymers grown from sucrose, glucose, and cyclodextrin cores via living radical polymerization mediated by a half-metallocene iron carbonyl complex. Macromolecules 34:5433–5438

    CAS  Google Scholar 

  165. Stenzel MH, Davis TPJ (2002) Star polymer synthesis using trithiocarbonate functional beta-cyclodextrin cores (reversible addition-fragmentation chain-transfer polymerization). Polym Sci Part A: Polym Chem 40:4498–4512

    Google Scholar 

  166. Karaky K, Reynaud S, Billon L, François J, Chreim YJ (2005) Organosoluble star polymers from a cyclodextrin core. Polym Sci Part A: Polym Chem 43:5186–5194

    Google Scholar 

  167. Yang C, Li H, Goh SH, Li J (2007) Cationic star polymers consisting of alpha-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials 28:3245–3254

    CAS  Google Scholar 

  168. He T, Hu T, Zhang X, Zhong G, Zhang H (2009) Synthesis and characterization of a novel liquid crystalline star-shaped polymer based on beta-CD core via ATRP. J Appl Polym Sci 112:2120–2126

    CAS  Google Scholar 

  169. Fijten MWM, Haensch C, van Lankvelt BM, Hoogenboom R, Schubert US (2008) Clickable poly(2-oxazoline)s as versatile building blocks. Macromol Chem Phys 209:1887–1895

    CAS  Google Scholar 

  170. Zhang L, Stenzel MH (2009) Spherical glycopolymer architectures using RAFT: from stars with a \(\beta \)-cyclodextrin core to thermoresponsive core–shell particles. Aust J Chem 62:813–822

    CAS  Google Scholar 

  171. Xu J, Liu SJ (2009) Synthesis of well-defined 7-arm and 21-arm poly(N-isopropylacrylamide) star polymers with beta-cyclodextrin cores via click chemistry and their thermal phase transition behavior in aqueous solution. Polym Sci Part A: Polym Chem 47:404–419

    Google Scholar 

  172. Zhang H, Yan Q, Kang Y, Zhou L, Zhou H, Yuan J, Wu S (2012) Fabrication of thermo-responsive hydrogels from star-shaped copolymer with a biocompatible \(\beta \)-cyclodextrin core. Polymer 53:3719–3725

    CAS  Google Scholar 

  173. Pang X, Feng C, Xu H, Han W, Xin X, Xia H, Qiu F, Lin Z (2014) : Unimolecular micelles composed of inner coil-like blocks and outer rod-like blocks crafted by combination of living polymerization with click chemistry. Polym Chem 5:2747–2755

    Google Scholar 

  174. Liu T, Xue W, Ke B, Xie M-Q, Ma D (2014) Star-shaped cyclodextrin-poly(l-lysine) derivative co-delivering docetaxel and MMP-9 siRNA plasmid in cancer therapy. Biomaterials 35:3865–3872

    Google Scholar 

  175. Miura Y, Narumi A, Matsuya S, Satoh T, Duan Q, Kaga H, Kakuchi TJ (2005) Synthesis of well-defined AB20-type star polymers with cyclodextrin-core by combination of NMP and ATRP. Polym Sci Part A: Polym Chem 43:4271–4279

    Google Scholar 

  176. Zhang Q, Li G-Z, Becer CR, Haddleton DM (2012) Cyclodextrin-centred star polymers synthesized via a combination of thiol-ene click and ring opening polymerization. Chem Commun 48:8063–8065

    CAS  Google Scholar 

  177. Li Y, Qian Y, Liu T, Zhang G, Hu J, Liu S (2014) Asymmetrically functionalized beta-cyclodextrin-based star copolymers for integrated gene delivery and magnetic resonance imaging contrast enhancement. Polym Chem 5:1743–1750

    Google Scholar 

  178. Shao S, Si J, Tang J, Sui M, Shen Y (2014) Jellyfish-shaped amphiphilic dendrimers: synthesis and formation of extremely uniform aggregates. Macromolecules 47:916–921

    Google Scholar 

  179. Zhao F, Yin H, Li J (2014) Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug. Biomaterials 35:1050–1062

    CAS  Google Scholar 

  180. Bai Y, Fan X-d, Tian W, Yao H, Zhuo L-h, tao Zhang H, Fan W-w, Yang Z, Zhang W-b (2013) Synthesis and thermally-triggered self-assembly behaviors of a dumbbell-shaped polymer carrying beta-cyclodextrin at branch points. Polymer 54:3566–3573

    Google Scholar 

  181. Teuchert C, Michel C, Hausen F, Park D-Y, Beckham HW, Wenz G (2013) Cylindrical polymer brushes by atom transfer radical polymerization from cyclodextrin/peg polyrotaxanes: synthesis and mechanical stability. Macromolecules 46:2–7

    CAS  Google Scholar 

  182. Nagahama K, Aoki R, Saito T, Ouchi T, Ohya Y, Yui N (2013) Enhanced stereocomplex formation of enantiomeric polylactides grafted on a polyrotaxane platform. Polym Chem 4:1769–1773

    CAS  Google Scholar 

  183. Zhang Z-X, Liu X, Xu FJ, Loh XJ, Kang E-T, Neoh K-G, Li J (2008) Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a beta-cyclodextrin core and guest-bearing peg: controlling thermoresponsivity through supramolecular self-assembly. Macromolecules 41:5967–5970

    CAS  Google Scholar 

  184. Zhang Z-X, Liu KL, Li J (2011) Self-assembly and micellization of a dual thermoresponsive supramolecular pseudo-block copolymer. Macromolecules 44:1182–1193

    CAS  Google Scholar 

  185. Tian Z, Chen C, Allcock HR (2014) Synthesis and assembly of novel poly(organophosphazene) structures based on noncovalent host/guest inclusion complexation. Macromolecules 47. doi:10.1021/ma500020p

    Google Scholar 

  186. Yan J, Zhang X, Zhang X, Liu K, Li W, Wu P, Zhang A (2012) Thermoresponsive supramolecular dendrimers via host/guest interactions. Macromol Chem Phys 213:2003–2010

    CAS  Google Scholar 

  187. Guo M, Jiang M, Pispas S, Yu W, Zhou C (2008) Supramolecular hydrogels made of end-functionalized low-molecular-weight PEG and alpha-cyclodextrin and their hybridization with SiO\(_{2}\) nanoparticles through host/guest interaction. Macromolecules 41:9744–9749

    CAS  Google Scholar 

  188. Liu J, Chen G, Guo M, Jiang M (2010) Dual stimuli-responsive supramolecular hydrogel based on hybrid inclusion complex (HIC). Macromolecules 43:8086–8093

    CAS  Google Scholar 

  189. Du P, Liu J, Chen G, Jiang M (2011) Dual responsive supramolecular hydrogel with electrochemical activity. Langmuir 27:9602–9608

    CAS  Google Scholar 

  190. Wei K, Li J, Liu J, Chen G, Jiang M (2012) Reversible vesicles of supramolecular hybrid nanoparticles. Soft Matter 8:3300–3303

    CAS  Google Scholar 

  191. Luo C, Zuo F, Zheng Z, Cheng X, Ding X, Peng Y (2008) Tunable smart surface of gold nanoparticles achieved by light-controlled molecular recognition effection. Macromol Rapid Commun 29:149–154

    CAS  Google Scholar 

  192. Li J (2009) In: Wenz G (ed) Inclusion polymers. Advances in polymer science, vol 222. Springer, Berlin Heidelberg, pp 175–203

    Google Scholar 

  193. Li J, Loh XJ (2008) Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev 60:1000–1017

    CAS  Google Scholar 

  194. Chen G, Jiang M (2011) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40:2254–2266

    CAS  Google Scholar 

  195. van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10:3157–3175

    Google Scholar 

  196. Li J (2010) Self-assembled supramolecular hydrogels based on polymer–cyclodextrin inclusion complexes for drug delivery. NPG Asia Mater 2:112–118

    Google Scholar 

  197. Ren L, He L, Sun T, Dong X, Chen Y, Huang J, Wang C (2009) Dual-responsive supramolecular hydrogels from water-soluble peg-grafted copolymers and cyclodextrin. Macromol Biosci 9:902–910

    CAS  Google Scholar 

  198. Sui K, Shan X, Gao S, Xia Y, Zheng Q, Xie DJ (2010) Dual-responsive supramolecular inclusion complexes of block copolymer poly(ethylene glycol)-block-poly[(2-dimethylamino)ethyl methacrylate] with alpha-cyclodextrin. Polym Sci Part A: Polym Chem 48:2143–2153

    Google Scholar 

  199. Li Z, Yin H, Zhang Z, Liu KL, Li J (2012) Supramolecular anchoring of DNA polyplexes in cyclodextrin-based polypseudorotaxane hydrogels for sustained gene delivery. Biomacromolecules 13:3162–3172

    CAS  Google Scholar 

  200. Zou H, Guo W, Yuan WJ (2013) Supramolecular hydrogels from inclusion complexation of [small alpha]-cyclodextrin with densely grafted chains in micelles for controlled drug and protein release. J Mater Chem B 1:6235–6244

    CAS  Google Scholar 

  201. Jin Q, Liu G, Ji J (2014) Supramolecular micelles and reverse micelles based on cyclodextrin polyrotaxanes. Chin J Chem 32:73–77

    CAS  Google Scholar 

  202. Wu Y, Ni P, Zhang M, Zhu X (2010) Fabrication of microgels via supramolecular assembly of cyclodextrin-containing star polycations and oppositely charged linear polyanions. Soft Matter 6:3751–3758

    CAS  Google Scholar 

  203. Hetzer M, Schmidt BVKJ, Barner-Kowollik C, Ritter H (2014) Supramolecular polymer networks of building blocks prepared via RAFT polymerization. Polym Chem. 5:2142–2152

    Google Scholar 

  204. Wang Y-F, Zhang D-L, Zhou T, Zhang H-S, Zhang W-Z, Zhang A, Luo L, Li B-J, Zhang S (2014) A reversible functional supramolecular materials formed by host-guest inclusion. Polym Chem 5:2922–2927

    Google Scholar 

  205. Zhang H, Peng L, Xin Y, Yan Q, Yuan J (2013) Stimuli-responsive polymer networks with beta-cyclodextrin and ferrocene reversible linkage based on linker chemistry. Macromol Symp 329:66–69

    CAS  Google Scholar 

  206. Guan Y, Zhao H-B, Yu L-X, Chen S-C, Wang Y-Z (2014) Multi-stimuli sensitive supramolecular hydrogel formed by host-guest interaction between PNIPAM-Azo and cyclodextrin dimers. RSC Adv 4:4955–4959

    CAS  Google Scholar 

  207. Wang L, Yang Y-W, Zhu M, Qiu G, Wu G, Gao H (2014) Beta-cyclodextrin-conjugated amino poly(glycerol methacrylate)s for efficient insulin delivery. RSC Adv 4:6478–6485

    CAS  Google Scholar 

  208. Zou J, Guan B, Liao X, Jiang M, Tao F (2009) Dual reversible self-assembly of PNIPAM-based amphiphiles formed by inclusion complexation. Macromolecules 42:7465–7473

    Google Scholar 

  209. Guo M, Jiang M, Zhang G (2008) Surface modification of polymeric vesicles via host/guest inclusion complexation. Langmuir 24:10583–10586

    CAS  Google Scholar 

  210. Inoue Y, Kuad P, Okumura Y, Takashima Y, Yamaguchi H, Harada A (2007) Thermal and photochemical switching of conformation of poly(ethylene glycol)-substituted cyclodextrin with an azobenzene group at the chain end. J Am Chem Soc 129:6396–6397

    CAS  Google Scholar 

  211. Felici M, Marzá-Pérez M, Hatzakis NS, Nolte RJM, Feiters MC (2008) Beta-cyclodextrin-appended giant amphiphile: aggregation to vesicle polymersomes and immobilisation of enzymes. Chem Eur J 14:9914–9920

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Volkmar Konrad Jakob Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmidt, B.V.K.J. (2014). Theoretical Background and Literature Overview. In: Novel Macromolecular Architectures via a Combination of Cyclodextrin Host/Guest Complexation and RAFT Polymerization. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06077-4_2

Download citation

Publish with us

Policies and ethics