Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 607 Accesses

Abstract

Star polymers are an important class of polymers that have attracted significant attention in the last years [24]. This can be attributed to unique properties originating from their condensed structure, non-linear shape, and multiple chain ends per macromolecule.

DLS measurements were performed in collaboration with T. Rudolph and Prof. F. H. Schacher (Friedrich Schiller Universität Jena). ROESY measurements were performed in collaboration with M. Hetzer and Prof. H. Ritter (Heinrich Heine Universität Düsseldorf). Parts of this chapter were reproduced from Schmidt et al. [1] with permission from the Royal Society of Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt BVKJ, Rudolph T, Hetzer M, Ritter H, Schacher FH, Barner-Kowollik C (2012) Supramolecular three-armed star polymers via cyclodextrin host/guest self-assembly. Polym Chem 3:3139–3154. doi:10.1039/C2PY20293J

    Article  CAS  Google Scholar 

  2. Inoue K (2000) Functional dendrimers, hyperbranched and star polymers. Prog Polym Sci 25:453–571

    Article  CAS  Google Scholar 

  3. Khanna K, Varshney S, Kakkar A (2010) Miktoarm star polymers: advances in synthesis, self-assembly, and applications. Polym Chem 1:1171–1185

    Article  CAS  Google Scholar 

  4. Higashihara T, Hayashi M, Hirao A (2011) Synthesis of well-defined star-branched polymers by stepwise iterative methodology using living anionic polymerization. Prog Polym Sci 36:323–375

    Article  CAS  Google Scholar 

  5. Kreutzer G, Ternat C, Nguyen TQ, Plummer CJG, Månson J-AE, Castelletto V, Hamley IW, Sun F, Sheiko SS, Herrmann A, Ouali L, Sommer H, Fieber W, Velazco MI, Klok H-A (2006) Water-soluble, unimolecular containers based on amphiphilic multiarm star block copolymers. Macromolecules 39:4507–4516

    Article  CAS  Google Scholar 

  6. Liu J, Duong H, Whittaker MR, Davis TP, Boyer C (2012) Synthesis of functional core, star polymers via RAFT polymerization for drug delivery applications. Macromol Rapid Commun 33:760–766

    Article  CAS  Google Scholar 

  7. Chen L, Li P, Tong H, Xie Z, Wang L, Jing X, Wang FJ (2012) White electroluminescent single-polymer achieved by incorporating three polyfluorene blue arms into a star-shaped orange core. Polym Sci Part A Polym Chem 50:2854–2862

    Article  CAS  Google Scholar 

  8. Kanaoka S, Sawamoto M, Higashimura T (1991) Star-shaped polymers by living cationic polymerization. 1. Synthesis of star-shaped polymers of alkyl and vinyl ethers. Macromolecules 24:2309–2313

    Article  CAS  Google Scholar 

  9. Schlaad H, Diehl C, Gress A, Meyer M, Demirel AL, Nur Y, Bertin A (2010) Poly(2-oxazoline)s as smart bioinspired polymers. Macromol Rapid Commun 31:511–525

    Article  CAS  Google Scholar 

  10. Hirano T, Yoo HS, Ozama Y, El-Magd AA, Sugiyama K, Hirao A (2010) Precise synthesis of novel ferrocene-based star-branched polymers by using specially designed 1,1-diphenylethylene derivatives in conjunction with living anionic polymerization. J Inorg Organomet Polym Mater 20:445–456

    Article  CAS  Google Scholar 

  11. Roovers JEL, Bywater S (1974) Preparation of six-branched polystyrene. Thermodynamic and hydrodynamic porperties of four- and six-branched star polystyrenes. Macromolecules 7:443–449

    Article  CAS  Google Scholar 

  12. Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688

    Article  CAS  Google Scholar 

  13. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146

    Article  CAS  Google Scholar 

  14. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition/fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  15. Barner-Kowollik C (2008) Handbook of RAFT-polymerization. Wiley-VCH, Weinheim

    Book  Google Scholar 

  16. Hawker CJ (1995) Architectural control in “living” free radical polymerizations: preparation of star and graft polymers. Angew Chem Int Ed 34:1456–1459

    Article  CAS  Google Scholar 

  17. Jankova K, Bednarek M, Hvilsted SJ (2005) Star polymers by ATRP of styrene and acrylates employing multifunctional initiators. Polym Sci Part A Polym Chem 43:3748–3759

    Google Scholar 

  18. Barner-Kowollik C, Davis TP, Stenzel MH (2006) Synthesis of star polymers using RAFT polymerization: what is possible? Aust J Chem 59:719–727

    Article  CAS  Google Scholar 

  19. Altintas O, Vogt AP, Barner-Kowollik C, Tunca U (2012) Constructing star polymers via modular ligation strategies. Polym Chem 3:34–45

    Article  CAS  Google Scholar 

  20. Barner-Kowollik C, Du Prez FE, Espeel P, Hawker CJ, Junkers T, Schlaad H, Van Camp W (2011) “Clicking” polymers or just efficient linking: what is the difference? Angew Chem Int Ed 50:60–62

    Article  CAS  Google Scholar 

  21. Gao H, Matyjaszewski K (2006) Synthesis of star polymers by a combination of ATRP and the “click” coupling method. Macromolecules 39:4960–4965

    Google Scholar 

  22. Fijten MWM, Haensch C, van Lankvelt BM, Hoogenboom R, Schubert US (2008) Clickable poly(2-oxazoline)s as versatile building blocks. Macromol Chem Phys 209:1887–1895

    Article  CAS  Google Scholar 

  23. Chan, JW, Yu B, Hoyle CE, Lowe AB (2008) Convergent synthesis of 3-arm star polymers from RAFT-prepared poly(N,N-diethylacrylamide) via a thiol-ene click reaction. Chem Commun 44:4959–4961

    Google Scholar 

  24. Inglis AJ, Sinnwell S, Stenzel MH, Barner-Kowollik C (2009) Ultrafast click conjugation of macromolecular building blocks at ambient temperature. Angew Chem Int Ed 48:2411–2414

    Article  CAS  Google Scholar 

  25. Iskin B, Yilmaz G, Yagci Y (2011) Synthesis of ABC type miktoarm star copolymers by triple click chemistry. Polym Chem 2:2865–2871

    Article  CAS  Google Scholar 

  26. Bernard J, Lortie F, Fenet B (2009) Design of heterocomplementary H-bonding RAFT agents towards the generation of supramolecular star polymers. Macromol Rapid Commun 30:83–88

    Article  CAS  Google Scholar 

  27. Likhitsup A, Yu S, Ng Y-H, Chai CLL, Tam EKW (2009) Controlled polymerization and self-assembly of a supramolecular star polymer with a guanosine quadruplex core. Chem Commun 45:4070–4072

    Google Scholar 

  28. Altintas O, Muller T, Lejeune E, Plietzsch O, Bräse S, Barner-Kowollik C (2012) Combining modular ligation and supramolecular self-assembly for the construction of star-shaped macromolecules. Macromol Rapid Commun 33:977–983

    Article  CAS  Google Scholar 

  29. Wu X, Fraser CL (2000) The importance of macroligand molecular weight and solvent polarity in modulating metal core reactivity in heteroleptic polymeric ruthenium tris(bipyridine) complex synthesis. Macromolecules 33:7776–7785

    Article  CAS  Google Scholar 

  30. Schubert US, Heller M (2001) Metallo-supramolecular initiators for the preparation of novel functional architectures. Chem Eur J 7:5252–5259

    Article  CAS  Google Scholar 

  31. Gadwal I, De S, Stuparu MC, Amir RJ, Jang SG, Khan AJ (2012) Supramolecular star polymers with compositional heterogeneity. Polym Sci Part A Polym Chem 50:1844–1850

    Google Scholar 

  32. Huang F, Nagvekar DS, Slebodnick C, Gibson HW (2004) A supramolecular triarm star polymer from a homotritopic tris(crown ether) host and a complementary monotopic paraquat-terminated polystyrene guest by a supramolecular coupling method. J Am Chem Soc 127:484–485

    Article  CAS  Google Scholar 

  33. Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6:659–668

    Article  CAS  Google Scholar 

  34. Zhou J, Ritter H (2010) Cyclodextrin functionalized polymers as drug delivery systems. Polym Chem 1:1552–1559

    Article  CAS  Google Scholar 

  35. Yhaya F, Lim J, Kim Y, Liang M, Gregory AM, Stenzel MH (2011) Development of micellar novel drug carrier utilizing temperature-sensitive block copolymers containing cyclodextrin moieties. Macromolecules 44:8433–8445

    Article  CAS  Google Scholar 

  36. Köllisch HS, Barner-Kowollik C, Ritter H (2009) Amphiphilic block copolymers based on cyclodextrin host-guest complexes via RAFT-polymerization in aqueous solution. Chem Commun 45:1097–1099

    Google Scholar 

  37. Ritter H, Mondrzik BE, Rehahn M, Gallei M (2010) Free radical homopolymerization of a vinylferrocene/cyclodextrin complex in water. Beilstein J Org Chem 6(60)

    Google Scholar 

  38. Ding L, Li Y, Deng J, Yang W (2011) Preparation of hydrophobic helical poly(N-propargylamide)s in aqueous medium. Polym Chem 2:694–701

    Article  CAS  Google Scholar 

  39. Ohno K, Wong B, Haddleton DMJ (2001) Synthesis of well-defined cyclodextrin-core star polymers. Polym Sci Part A Polym Chem 39:2206–2214

    Google Scholar 

  40. Stenzel MH, Davis TPJ (2002) Star polymer synthesis using trithiocarbonate functional beta-cyclodextrin cores (reversible addition/fragmentation chain-transfer polymerization). Polym Sci Part A Polym Chem 40:4498–4512

    Google Scholar 

  41. Miura Y, Narumi A, Matsuya S, Satoh T, Duan Q, Kaga H, Kakuchi TJ (2005) Synthesis of well-defined AB20-type star polymers with cyclodextrin-core by combination of NMP and ATRP. Polym Sci Part A Polym Chem 43:4271–4279

    Google Scholar 

  42. Zhang Z-X, Liu X, Xu FJ, Loh XJ, Kang E-T, Neoh K-G, Li J (2008) Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a beta-cyclodextrin core and guest-bearing PEG: controlling thermoresponsivity through supramolecular self-assembly. Macromolecules 41:5967–5970

    Article  CAS  Google Scholar 

  43. Zhang Z-X, Liu KL, Li J (2011) Self-assembly and micellization of a dual thermoresponsive supramolecular pseudo-block copolymer. Macromolecules 44:1182–1193

    Article  CAS  Google Scholar 

  44. Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98:1875–1918

    Article  CAS  Google Scholar 

  45. Dong R, Liu Y, Zhou Y, Yan D, Zhu X (2011) Photo-reversible supramolecular hyperbranched polymer based on host-guest interactions. Polym Chem 2:2771–2774

    Article  CAS  Google Scholar 

  46. Wang X, Wu C (1999) Light-scattering study of coil-to-globule transition of a poly(N-isopropylacrylamide) chain in deuterated water. Macromolecules 32:4299–4301

    Article  CAS  Google Scholar 

  47. Kujawa P, Winnik FM (2001) Volumetric studies of aqueous polymer solutions using pressure perturbation calorimetry: a new look at the temperature-induced phase transition of poly(N-isopropylacrylamide) in water and \({\text{ D }}_{2}\)O. Macromolecules 34:4130–4135

    Article  CAS  Google Scholar 

  48. Mao H, Li C, Zhang Y, Furyk S, Cremer PS, Bergbreiter DE (2004) High-throughput studies of the effects of polymer structure and solution components on the phase separation of thermoresponsive polymers. Macromolecules 37:1031–1036

    Article  CAS  Google Scholar 

  49. Gan LH, Cai W, Tam KC (2001) Studies of phase transition of aqueous solution of poly(N,N-diethylacrylamide-co-acrylic acid) by differential scanning calorimetry and spectrophotometry. Eur Polym J 37:1773–1778

    Article  CAS  Google Scholar 

  50. Kujawa P, Segui F, Shaban S, Diab C, Okada Y, Tanaka F, Winnik FM (2005) Impact of end-group association and main-chain hydration on the thermosensitive properties of hydrophobically modified telechelic poly(N-isopropylacrylamides) in water. Macromolecules 39:341–348

    Article  CAS  Google Scholar 

  51. Schneider H-J, Hacket F, Rüdiger V, Ikeda H (1998) NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev 98:1755–1786

    Article  CAS  Google Scholar 

  52. Liu H, Zhang Y, Hu J, Li C, Liu S (2009) Multi-responsive supramolecular double hydrophilic diblock copolymer driven by host-guest inclusion complexation between beta-cyclodextrin and adamantyl moieties. Macromol Chem Phys 210:2125–2137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Volkmar Konrad Jakob Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmidt, B.V.K.J. (2014). Supramolecular Three Armed Star Polymers. In: Novel Macromolecular Architectures via a Combination of Cyclodextrin Host/Guest Complexation and RAFT Polymerization. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06077-4_5

Download citation

Publish with us

Policies and ethics