Skip to main content

Nutraceutical Regulation of the Neuroimmunoendocrine Super-system

  • Chapter
  • First Online:
Pharma-Nutrition

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 12))

  • 2076 Accesses

Abstract

It is clear that nutrition affects a range of biological processes that are critical to the immune response including cell proliferation and survival, signal transduction and gene expression. Consequently, there is an increased interest in the use of dietary strategies to control a range of inflammatory and immune disorders.

The gastrointestinal tract is deeply integrated into many aspects of host physiology, influencing neural and endocrine responses that help maintain immune homeostasis. Thus, in addition to direct effects on the immune system, nutritional interventions can alter components of the neuroendocrine system that in turn play a critical role in regulating systemic immunity. This review focuses on the actions of probiotic bacteria and n3 polyunsaturated fatty acids (n3 PUFAs) on the enteric nervous system, vagus nerve and hypothalamus–pituitary–adrenal (HPA) axis that may contribute to the therapeutic effects of nutraceuticals in immune disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Viladomiu M, Hontecillas R, Yuan L, Lu P, Bassaganya-Riera J (2013) Nutritional protective mechanisms against gut inflammation. J Nutr Biochem 24(6):929–939

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Miles EA, Calder PC (2012) Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr 107(Suppl 2):S171–S184

    CAS  PubMed  Google Scholar 

  3. Jennings S, Prescott SL (2010) Early dietary exposures and feeding practices: role in pathogenesis and prevention of allergic disease? Postgrad Med J 86:94–99

    CAS  PubMed  Google Scholar 

  4. Calder PC, Kremmyda LS, Vlachava M, Noakes PS, Miles EA (2010) Is there a role for fatty acids in early life programming of the immune system? Proc Nutr Soc 69:373–380

    CAS  PubMed  Google Scholar 

  5. Nova E, Warnberg J, Gomez-Martinez S, Diaz LE, Romeo J et al (2007) Immunomodulatory effects of probiotics in different stages of life. Br J Nutr 98(Suppl 1):S90–S95

    CAS  PubMed  Google Scholar 

  6. Pae M, Meydani SN, Wu D (2012) The role of nutrition in enhancing immunity in aging. Aging Dis 3:91–129

    PubMed Central  PubMed  Google Scholar 

  7. Greer FR (2010) The role of pediatricians as innovators in pediatric nutrition. Nestle Nutr Workshop Ser Pediatr Program 66:191–203

    PubMed  Google Scholar 

  8. Szajewska H, Makrides M (2011) Is early nutrition related to short-term health and long-term outcome? Ann Nutr Metab 58(Suppl 1):38–48

    CAS  PubMed  Google Scholar 

  9. Bomba A, Nemcova R, Gancarcikova S, Herich R, Guba P et al (2002) Improvement of the probiotic effect of micro-organisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated fatty acids. Br J Nutr 88(Suppl 1):S95–S99

    CAS  PubMed  Google Scholar 

  10. Kankaanpaa PE, Salminen SJ, Isolauri E, Lee YK (2001) The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol Lett 194:149–153

    CAS  PubMed  Google Scholar 

  11. Shreiner A, Huffnagle GB, Noverr MC (2008) The “Microflora Hypothesis” of allergic disease. Adv Exp Med Biol 635:113–134

    CAS  PubMed  Google Scholar 

  12. Reid G (2005) The importance of guidelines in the development and application of probiotics. Curr Pharm Des 11:11–16

    CAS  PubMed  Google Scholar 

  13. Forsythe P, Bienenstock J (2010) Immunomodulation by commensal and probiotic bacteria. Immunol Invest 39:429–448

    CAS  PubMed  Google Scholar 

  14. Forsythe P (2011) Probiotics and lung diseases. Chest 139:901–908

    CAS  PubMed  Google Scholar 

  15. Yan F, Polk DB (2011) Probiotics and immune health. Curr Opin Gastroenterol 27:496–501

    PubMed Central  PubMed  Google Scholar 

  16. Hisbergues M, Magi M, Rigaux P, Steuve J, Garcia L et al (2007) In vivo and in vitro immunomodulation of Der p 1 allergen-specific response by Lactobacillus plantarum bacteria. Clin Exp Allergy 37:1286–1295

    CAS  PubMed  Google Scholar 

  17. Baba N, Samson S, Bourdet-Sicard R, Rubio M, Sarfati M (2009) Selected commensal-related bacteria and Toll-like receptor 3 agonist combinatorial codes synergistically induce interleukin-12 production by dendritic cells to trigger a T helper type 1 polarizing programme. Immunology 128:e523–e531

    PubMed Central  PubMed  Google Scholar 

  18. Iwabuchi N, Takahashi N, Xiao JZ, Yonezawa S, Yaeshima T et al (2009) Suppressive effects of Bifidobacterium longum on the production of Th2-attracting chemokines induced with T cell-antigen-presenting cell interactions. FEMS Immunol Med Microbiol 55:324–334

    CAS  PubMed  Google Scholar 

  19. Karimi K, Inman MD, Bienenstock J, Forsythe P (2009) Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med 179:186–193

    CAS  PubMed  Google Scholar 

  20. Lyons A, O’Mahony D, O’Brien F, MacSharry J, Sheil B et al (2010) Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin Exp Allergy 40:811–819

    CAS  PubMed  Google Scholar 

  21. Kwon HK, Lee CG, So JS, Chae CS, Hwang JS et al (2010) Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci U S A 107:2159–2164

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Forsythe P, Wang B, Khambati I, Kunze WA (2012) Systemic effects of ingested Lactobacillus rhamnosus: inhibition of mast cell membrane potassium (IKCa) current and degranulation. PLoS One 7:e41234

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Kim JY, Choi YO, Ji GE (2008) Effect of oral probiotics (Bifidobacterium lactis AD011 and Lactobacillus acidophilus AD031) administration on ovalbumin-induced food allergy mouse model. J Microbiol Biotechnol 18:1393–1400

    CAS  PubMed  Google Scholar 

  24. Magerl M, Lammel V, Siebenhaar F, Zuberbier T, Metz M et al (2008) Non-pathogenic commensal Escherichia coli bacteria can inhibit degranulation of mast cells. Exp Dermatol 17:427–435

    PubMed  Google Scholar 

  25. Oksaharju A, Kankainen M, Kekkonen RA, Lindstedt KA, Kovanen PT et al (2011) Probiotic Lactobacillus rhamnosus downregulates FCER1 and HRH4 expression in human mast cells. World J Gastroenterol 17:750–759

    PubMed Central  PubMed  Google Scholar 

  26. Calder PC (2013) Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br J Clin Pharmacol 75:645–662

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Gibney MJ, Hunter B (1993) The effects of short- and long-term supplementation with fish oil on the incorporation of n-3 polyunsaturated fatty acids into cells of the immune system in healthy volunteers. Eur J Clin Nutr 47:255–259

    CAS  PubMed  Google Scholar 

  28. Healy DA, Wallace FA, Miles EA, Calder PC, Newsholm P (2000) Effect of low-to-moderate amounts of dietary fish oil on neutrophil lipid composition and function. Lipids 35:763–768

    CAS  PubMed  Google Scholar 

  29. Khalfoun B, Thibault F, Watier H, Bardos P, Lebranchu Y (1997) Docosahexaenoic and eicosapentaenoic acids inhibit in vitro human endothelial cell production of interleukin-6. Adv Exp Med Biol 400B:589–597

    CAS  PubMed  Google Scholar 

  30. Lo CJ, Chiu KC, Fu M, Lo R, Helton S (1999) Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NF kappa B activity. J Surg Res 82:216–221

    CAS  PubMed  Google Scholar 

  31. Lo CJ, Chiu KC, Fu M, Chu A, Helton S (2000) Fish oil modulates macrophage P44/P42 mitogen-activated protein kinase activity induced by lipopolysaccharide. JPEN J Parenter Enteral Nutr 24:159–163

    CAS  PubMed  Google Scholar 

  32. Babcock TA, Helton WS, Anwar KN, Zhao YY, Espat NJ (2004) Synergistic anti-inflammatory activity of omega-3 lipid and rofecoxib pretreatment on macrophage proinflammatory cytokine production occurs via divergent NF-kappaB activation. JPEN J Parenter Enteral Nutr 28:232–239, discussion 239–240

    CAS  PubMed  Google Scholar 

  33. Blok WL, Katan MB, van der Meer JW (1996) Modulation of inflammation and cytokine production by dietary (n-3) fatty acids. J Nutr 126:1515–1533

    CAS  PubMed  Google Scholar 

  34. Hughes DA, Pinder AC, Piper Z, Johnson IT, Lund EK (1996) Fish oil supplementation inhibits the expression of major histocompatibility complex class II molecules and adhesion molecules on human monocytes. Am J Clin Nutr 63:267–272

    CAS  PubMed  Google Scholar 

  35. Forsythe P (2012) The nervous system as a critical regulator of immune responses underlying allergy. Curr Pharm Des 18:2290–2304

    CAS  PubMed  Google Scholar 

  36. Hermann GE, Rogers RC (2008) TNFalpha: a trigger of autonomic dysfunction. Neuroscientist 14:53–67

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    CAS  PubMed  Google Scholar 

  38. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24:4–10

    CAS  PubMed  Google Scholar 

  39. Wood JD (2002) Neuropathophysiology of irritable bowel syndrome. J Clin Gastroenterol 35:S11–S22

    PubMed  Google Scholar 

  40. Bonaz BL, Bernstein CN (2013) Brain-gut interactions in inflammatory bowel diseases. Gastroenterology 144(1):36–49

    Google Scholar 

  41. Ottaway CA, Greenberg GR (1984) Interaction of vasoactive intestinal peptide with mouse lymphocytes: specific binding and the modulation of mitogen responses. J Immunol 132:417–423

    CAS  PubMed  Google Scholar 

  42. Miura S, Serizawa H, Tsuzuki Y, Kurose I, Suematsu M et al (1997) Vasoactive intestinal peptide modulates T lymphocyte migration in Peyer's patches of rat small intestine. Am J Physiol 272:G92–G99

    CAS  PubMed  Google Scholar 

  43. Bienenstock J, Croitoru K, Ernst PB, Stead RH, Stanisz A (1989) Neuroendocrine regulation of mucosal immunity. Immunol Invest 18:69–76

    CAS  PubMed  Google Scholar 

  44. Scicchitano R, Bienenstock J, Stanisz AM (1987) The differential effect with time of neuropeptides on the proliferative responses of murine Peyer's patch and splenic lymphocytes. Brain Behav Immun 1:231–237

    CAS  PubMed  Google Scholar 

  45. Pascual DW, Beagley KW, Kiyono H, McGhee JR (1995) Substance P promotes Peyer’s patch and splenic B cell differentiation. Adv Exp Med Biol 371A:55–59

    CAS  PubMed  Google Scholar 

  46. Delgado M, Gonzalez-Rey E, Ganea D (2006) Vasoactive intestinal peptide: the dendritic cell → regulatory T cell axis. Ann N Y Acad Sci 1070:233–238

    CAS  PubMed  Google Scholar 

  47. Pavlovic S, Liezmann C, Blois SM, Joachim R, Kruse J et al (2011) Substance P is a key mediator of stress-induced protection from allergic sensitization via modified antigen presentation. J Immunol 186:848–855

    CAS  PubMed  Google Scholar 

  48. Keast JR, Furness JB, Costa M (1984) Somatostatin in human enteric nerves. Distribution and characterization. Cell Tissue Res 237:299–308

    CAS  PubMed  Google Scholar 

  49. Ekblad E, Winther C, Ekman R, Hakanson R, Sundler F (1987) Projections of peptide-containing neurons in rat small intestine. Neuroscience 20:169–188

    CAS  PubMed  Google Scholar 

  50. Kunze WA, Furness JB (1999) The enteric nervous system and regulation of intestinal motility. Annu Rev Physiol 61:117–142

    CAS  PubMed  Google Scholar 

  51. Kunze WA, Mao YK, Wang B, Huizinga JD, Ma X et al (2009) Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium dependent potassium channel opening. J Cell Mol Med 13(8B):2261–2270

    PubMed  Google Scholar 

  52. Wang B, Mao YK, Diorio C, Pasyk M, Wu RY et al (2010) Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes. FASEB J 24:4078–4088

    CAS  PubMed  Google Scholar 

  53. Kamm K, Hoppe S, Breves G, Schroder B, Schemann M (2004) Effects of the probiotic yeast Saccharomyces boulardii on the neurochemistry of myenteric neurones in pig jejunum. Neurogastroenterol Motil 16:53–60

    CAS  PubMed  Google Scholar 

  54. Wang B, Mao YK, Diorio C, Wang L, Huizinga JD et al (2010) Lactobacillus reuteri ingestion and IK(Ca) channel blockade have similar effects on rat colon motility and myenteric neurones. Neurogastroenterol Motil 22(98–107):e33

    Google Scholar 

  55. Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT (1986) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234:734–737

    CAS  PubMed  Google Scholar 

  56. Mei N (1983) Recent studies on intestinal vagal afferent innervation. Functional implications. J Auton Nerv Syst 9:199–206

    CAS  PubMed  Google Scholar 

  57. Blackshaw LA, Brookes SJ, Grundy D, Schemann M (2007) Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 19:1–19

    CAS  PubMed  Google Scholar 

  58. Wang FB, Powley TL (2007) Vagal innervation of intestines: afferent pathways mapped with new en bloc horseradish peroxidase adaptation. Cell Tissue Res 329:221–230

    PubMed  Google Scholar 

  59. Berthoud HR, Lynn PA, Blackshaw LA (2001) Vagal and spinal mechanosensors in the rat stomach and colon have multiple receptive fields. Am J Physiol Regul Integr Comp Physiol 280:R1371–R1381

    CAS  PubMed  Google Scholar 

  60. Li Y (2007) Sensory signal transduction in the vagal primary afferent neurons. Curr Med Chem 14:2554–2563

    CAS  PubMed  Google Scholar 

  61. Dantzer R, Konsman JP, Bluthe RM, Kelley KW (2000) Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci 85:60–65

    CAS  PubMed  Google Scholar 

  62. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI et al (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    CAS  PubMed  Google Scholar 

  63. Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, Verdu EF, Collins SM (2006) The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131:1122–1130

    PubMed  Google Scholar 

  64. Karimi K, Bienenstock J, Wang L, Forsythe P (2010) The vagus nerve modulates CD4+ T cell activity. Brain Behav Immun 24:316–323

    CAS  PubMed  Google Scholar 

  65. O'Mahony C, van der Kleij H, Bienenstock J, Shanahan F, O'Mahony L (2009) Loss of vagal anti-inflammatory effect: in vivo visualization and adoptive transfer. Am J Physiol Regul Integr Comp Physiol 297:R1118–R1126

    PubMed  Google Scholar 

  66. Lal S, Kirkup AJ, Brunsden AM, Thompson DG, Grundy D (2001) Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol 281:G907–G915

    CAS  PubMed  Google Scholar 

  67. Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH et al (2005) Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 202:1023–1029

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Glatzle J, Kasparek MS, Mueller MH, Binder F, Meile T et al (2007) Enteral immunonutrition during sepsis prevents pulmonary dysfunction in a rat model. J Gastrointest Surg 11:719–724

    PubMed  Google Scholar 

  69. Lubbers T, de Haan JJ, Luyer MD, Verbaeys I, Hadfoune M et al (2010) Cholecystokinin/cholecystokinin-1 receptor-mediated peripheral activation of the afferent vagus by enteral nutrients attenuates inflammation in rats. Ann Surg 252:376–382

    PubMed  Google Scholar 

  70. Billman GE (2012) Effect of dietary omega-3 polyunsaturated Fatty acids on heart rate and heart rate variability in animals susceptible or resistant to ventricular fibrillation. Front Physiol 3:71

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Christensen JH (2011) Omega-3 polyunsaturated Fatty acids and heart rate variability. Front Physiol 2:84

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Huston JM, Tracey KJ (2011) The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. J Intern Med 269:45–53

    CAS  PubMed  Google Scholar 

  73. Thayer JF, Brosschot JF (2005) Psychosomatics and psychopathology: looking up and down from the brain. Psychoneuroendocrinology 30:1050–1058

    PubMed  Google Scholar 

  74. Weber CS, Thayer JF, Rudat M, Wirtz PH, Zimmermann-Viehoff F et al (2010) Low vagal tone is associated with impaired post stress recovery of cardiovascular, endocrine, and immune markers. Eur J Appl Physiol 109:201–211

    PubMed  Google Scholar 

  75. Sloan RP, McCreath H, Tracey KJ, Sidney S, Liu K et al (2007) RR interval variability is inversely related to inflammatory markers: the CARDIA study. Mol Med 13:178–184

    PubMed Central  PubMed  Google Scholar 

  76. Tracey KJ (2005) Fat meets the cholinergic antiinflammatory pathway. J Exp Med 202:1017–1021

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Huston JM, Gallowitsch-Puerta M, Ochani M, Ochani K, Yuan R et al (2007) Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 35:2762–2768

    PubMed  Google Scholar 

  78. Eisner F, Jacob P, Frick JS, Feilitzsch M, Geisel J et al (2011) Immunonutrition with long-chain fatty acids prevents activation of macrophages in the gut wall. J Gastrointest Surg 15:853–859

    PubMed  Google Scholar 

  79. Long H, Yang H, Lin Y, Situ D, Liu W (2013) Fish oil-supplemented parenteral nutrition in patients following esophageal cancer surgery: effect on inflammation and immune function. Nutr Cancer 65:71–75

    CAS  PubMed  Google Scholar 

  80. Lubbers T, Kox M, de Haan JJ, Greve JW, Pompe JC et al (2013) Continuous administration of enteral lipid- and protein-rich nutrition limits inflammation in a human endotoxemia model. Crit Care Med 41(5):1258–1265

    CAS  PubMed  Google Scholar 

  81. Tanida M, Yamano T, Maeda K, Okumura N, Fukushima Y et al (2005) Effects of intraduodenal injection of Lactobacillus johnsonii La1 on renal sympathetic nerve activity and blood pressure in urethane-anesthetized rats. Neurosci Lett 389:109–114

    CAS  PubMed  Google Scholar 

  82. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108:16050–16055

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J et al (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23:1132–1139

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Krahl SE, Senanayake SS, Pekary AE, Sattin A (2004) Vagus nerve stimulation (VNS) is effective in a rat model of antidepressant action. J Psychiatr Res 38:237–240

    PubMed  Google Scholar 

  85. Cunningham JT, Mifflin SW, Gould GG, Frazer A (2008) Induction of c-Fos and DeltaFosB immunoreactivity in rat brain by Vagal nerve stimulation. Neuropsychopharmacology 33:1884–1895

    CAS  PubMed  Google Scholar 

  86. van der Kleij H, O'Mahony C, Shanahan F, O'Mahony L, Bienenstock J (2008) Protective effects of Lactobacillus reuteri and Bifidobacterium infantis in murine models for colitis do not involve the vagus nerve. Am J Physiol Regul Integr Comp Physiol 295:R1131–R1137

    PubMed  Google Scholar 

  87. Silverman MN, Sternberg EM (2012) Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci 1261:55–63

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Sternberg EM (2001) Neuroendocrine regulation of autoimmune/inflammatory disease. J Endocrinol 169:429–435

    CAS  PubMed  Google Scholar 

  89. Brain SD (1997) Sensory neuropeptides: their role in inflammation and wound healing. Immunopharmacology 37:133–152

    CAS  PubMed  Google Scholar 

  90. Mao Y, Wang B, Kunze W (2006) Characterization of myenteric sensory neurons in the mouse small intestine. J Neurophysiol 96:998–1010

    PubMed  Google Scholar 

  91. Crofford LJ (2002) The hypothalamic-pituitary-adrenal axis in the pathogenesis of rheumatic diseases. Endocrinol Metab Clin North Am 31:1–13

    CAS  PubMed  Google Scholar 

  92. Mawdsley JE, Rampton DS (2005) Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut 54:1481–1491

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Gold SM, Heesen C (2006) Stress and disease progression in multiple sclerosis and its animal models. Neuroimmunomodulation 13:318–326

    CAS  PubMed  Google Scholar 

  94. Priftis KN, Papadimitriou A, Nicolaidou P, Chrousos GP (2008) The hypothalamic-pituitary-adrenal axis in asthmatic children. Trends Endocrinol Metab 19:32–38

    CAS  PubMed  Google Scholar 

  95. Buske-Kirschbaum A, von Auer K, Krieger S, Weis S, Rauh W et al (2003) Blunted cortisol responses to psychosocial stress in asthmatic children: a general feature of atopic disease? Psychosom Med 65:806–810

    CAS  PubMed  Google Scholar 

  96. Sanger GJ, Tuladhar BR, Bueno L, Furness JB (2006) Defensive and pathological functions of the gastrointestinal NK(3) receptor. Vascul Pharmacol 45(4):215–220

    CAS  PubMed  Google Scholar 

  97. Hirayama K, Sudo N, Sueyasu M, Sonoda J, Chida Y et al (2003) Endogenous glucocorticoids inhibit scratching behavior induced by the administration of compound 48/80 in mice. Eur J Pharmacol 481:59–65

    CAS  PubMed  Google Scholar 

  98. Chida Y, Sudo N, Sonoda J, Hiramoto T, Kubo C (2007) Early-life psychological stress exacerbates adult mouse asthma via the hypothalamus-pituitary-adrenal axis. Am J Respir Crit Care Med 175:316–322

    CAS  PubMed  Google Scholar 

  99. Thacker M, Zhang FL, Jungnickel SR, Furness JB (2006) Binding of isolectin IB4 to neurons of the mouse enteric nervous system. J Mol Histol 37(1–2):61–68

    CAS  PubMed  Google Scholar 

  100. Shimizu Y, Chang EC, Shafton AD, Ferens D, Sanger GJ et al (2006) Evidence that stimulation of ghrelin receptors in the spinal cord initiates propulsive activity in the colon of the rat. J Physiol 576(Pt 1):329–338

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N et al (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Gareau MG, Jury J, Macqueen G, Sherman PM, Perdue MH (2007) Probiotic treatment of rat pups normalizes corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56(11):1522–1528

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23(255–64):e119

    Google Scholar 

  104. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D et al (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105:755–764

    CAS  PubMed  Google Scholar 

  105. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H et al (2012) Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37(11):1885–1895

    CAS  PubMed  Google Scholar 

  106. Chen HF, Su HM (2013) Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life. J Nutr Biochem 24:70–80

    CAS  PubMed  Google Scholar 

  107. Harauma A, Moriguchi T (2011) Dietary n-3 fatty acid deficiency in mice enhances anxiety induced by chronic mild stress. Lipids 46:409–416

    CAS  PubMed  Google Scholar 

  108. Trofimiuk E, Braszko JJ (2011) Long-term administration of cod liver oil ameliorates cognitive impairment induced by chronic stress in rats. Lipids 46:417–423

    CAS  PubMed  Google Scholar 

  109. Hibbeln JR, Bissette G, Umhau JC, George DT (2004) Omega-3 status and cerebrospinal fluid corticotrophin releasing hormone in perpetrators of domestic violence. Biol Psychiatry 56:895–897

    CAS  PubMed  Google Scholar 

  110. Delarue J, Matzinger O, Binnert C, Schneiter P, Chiolero R et al (2003) Fish oil prevents the adrenal activation elicited by mental stress in healthy men. Diabetes Metab 29:289–295

    CAS  PubMed  Google Scholar 

  111. Barbadoro P, Annino I, Ponzio E, Romanelli RM, D’Errico MM et al (2013) Fish oil supplementation reduces cortisol basal levels and perceived stress: a randomized, placebo-controlled trial in abstinent alcoholics. Mol Nutr Food Res 57(6):1110–1114

    CAS  PubMed  Google Scholar 

  112. Huang SY, Yang HT, Chiu CC, Pariante CM, Su KP (2008) Omega-3 fatty acids on the forced-swimming test. J Psychiatr Res 42:58–63

    PubMed  Google Scholar 

  113. Jiang LH, Liang QY, Shi Y (2012) Pure docosahexaenoic acid can improve depression behaviors and affect HPA axis in mice. Eur Rev Med Pharmacol Sci 16:1765–1773

    PubMed  Google Scholar 

  114. Jazayeri S, Tehrani-Doost M, Keshavarz SA, Hosseini M, Djazayery A et al (2008) Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Aust N Z J Psychiatry 42:192–198

    PubMed  Google Scholar 

  115. Jazayeri S, Keshavarz SA, Tehrani-Doost M, Djalali M, Hosseini M et al (2010) Effects of eicosapentaenoic acid and fluoxetine on plasma cortisol, serum interleukin-1beta and interleukin-6 concentrations in patients with major depressive disorder. Psychiatry Res 178:112–115

    CAS  PubMed  Google Scholar 

  116. Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Glaser R (2011) Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial. Brain Behav Immun 25:1725–1734

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Nishikawa M, Kimura S, Akaike N (1994) Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurones of rat cerebral cortex. J Physiol 475:83–93

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Hamano H, Nabekura J, Nishikawa M, Ogawa T (1996) Docosahexaenoic acid reduces GABA response in substantia nigra neuron of rat. J Neurophysiol 75:1264–1270

    CAS  PubMed  Google Scholar 

  119. Nabekura J, Noguchi K, Witt MR, Nielsen M, Akaike N (1998) Functional modulation of human recombinant gamma-aminobutyric acid type A receptor by docosahexaenoic acid. J Biol Chem 273:11056–11061

    CAS  PubMed  Google Scholar 

  120. Takeuchi T, Iwanaga M, Harada E (2003) Possible regulatory mechanism of DHA-induced anti-stress reaction in rats. Brain Res 964:136–143

    CAS  PubMed  Google Scholar 

  121. de Vogel-van den Bosch HM, Bunger M, de Groot PJ, Bosch-Vermeulen H, Hooiveld GJ et al (2008) PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression. BMC Genomics 9:231

    PubMed Central  PubMed  Google Scholar 

  122. Liu Y, Chen F, Odle J, Lin X, Jacobi SK et al (2012) Fish oil enhances intestinal integrity and inhibits TLR4 and NOD2 signaling pathways in weaned pigs after LPS challenge. J Nutr 142:2017–2024

    CAS  PubMed  Google Scholar 

  123. Willemsen LE, Koetsier MA, Balvers M, Beermann C, Stahl B et al (2008) Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4 mediated permeability in vitro. Eur J Nutr 47:183–191

    CAS  PubMed  Google Scholar 

  124. Forsythe P, Bienenstock J (2012) The mast cell-nerve functional unit: a key component of physiologic and pathophysiologic responses. Chem Immunol Allergy 98:196–221

    CAS  PubMed  Google Scholar 

  125. van Houwelingen AH, Kool M, de Jager SCA, Redegeld FAM, van Heuven-Nolsen D et al (2002) Mast cell-derived TNF-{alpha} primes sensory nerve endings in a pulmonary hypersensitivity reaction. J Immunol 168:5297–5302

    PubMed  Google Scholar 

  126. Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S et al (1994) Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci U S A 91:3739–3743

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Kakurai M, Monteforte R, Suto H, Tsai M, Nakae S et al (2006) Mast cell-derived tumor necrosis factor can promote nerve fiber elongation in the skin during contact hypersensitivity in mice. Am J Pathol 169:1713–1721

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Arnett HA, Wang Y, Matsushima GK, Suzuki K, Ting JP (2003) Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J Neurosci 23:9824–9832

    CAS  PubMed  Google Scholar 

  129. Frieling T, Cooke HJ, Wood JD (1991) Serotonin receptors on submucous neurons in guinea pig colon. Am J Physiol 261:G1017–G1023

    CAS  PubMed  Google Scholar 

  130. Frieling T, Cooke HJ, Wood JD (1993) Histamine receptors on submucous neurons in guinea pig colon. Am J Physiol 264:G74–G80

    CAS  PubMed  Google Scholar 

  131. Theoharides TC (1990) Mast cells: the immune gate to the brain. Life Sci 46:607–617

    CAS  PubMed  Google Scholar 

  132. Nautiyal KM, Ribeiro AC, Pfaff DW, Silver R (2008) Brain mast cells link the immune system to anxiety-like behavior. Proc Natl Acad Sci U S A 105:18053–18057

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Matsumoto I, Inoue Y, Shimada T, Aikawa T (2001) Brain mast cells act as an immune gate to the hypothalamic-pituitary-adrenal axis in dogs. J Exp Med 194:71–78

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Esposito P, Chandler N, Kandere K, Basu S, Jacobson S et al (2002) Corticotropin-releasing hormone and brain mast cells regulate blood–brain-barrier permeability induced by acute stress. J Pharmacol Exp Ther 303:1061–1066

    CAS  PubMed  Google Scholar 

  135. Wallon C, Yang PC, Keita AV, Ericson AC, McKay DM et al (2008) Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 57:50–58

    CAS  PubMed  Google Scholar 

  136. Stead RH, Colley EC, Wang B, Partosoedarso E, Lin J et al (2006) Vagal influences over mast cells. Auton Neurosci 125:53–61

    CAS  PubMed  Google Scholar 

  137. Williams RM, Berthoud HR, Stead RH (1997) Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa. Neuroimmunomodulation 4:266–270

    CAS  PubMed  Google Scholar 

  138. Yu S, Gao G, Peterson BZ, Ouyang A (2009) TRPA1 in mast cell activation-induced long-lasting mechanical hypersensitivity of vagal afferent C-fibers in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 297:G34–G42

    CAS  PubMed  Google Scholar 

  139. Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C et al (2007) Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132:26–37

    CAS  PubMed  Google Scholar 

  140. Wood JD (2007) Neuropathophysiology of functional gastrointestinal disorders. World J Gastroenterol 13:1313–1332

    CAS  PubMed  Google Scholar 

  141. Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M et al (2001) Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A 98:13942–13947

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA et al (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol Sci 25:280–289

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Wulff H, Beeton C, Chandy KG (2003) Potassium channels as therapeutic targets for autoimmune disorders. Curr Opin Drug Discov Devel 6:640–647

    CAS  PubMed  Google Scholar 

  144. Wulff H, Knaus HG, Pennington M, Chandy KG (2004) K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J Immunol 173:776–786

    CAS  PubMed  Google Scholar 

  145. Mark Duffy S, Berger P, Cruse G, Yang W, Bolton SJ et al (2004) The K+ channel iKCA1 potentiates Ca2+ influx and degranulation in human lung mast cells. J Allergy Clin Immunol 114:66–72

    CAS  PubMed  Google Scholar 

  146. Shumilina E, Lam RS, Wolbing F, Matzner N, Zemtsova IM et al (2008) Blunted IgE-mediated activation of mast cells in mice lacking the Ca2+-activated K+ channel KCa3.1. J Immunol 180:8040–8047

    CAS  PubMed  Google Scholar 

  147. Duffy SM, Cruse G, Brightling CE, Bradding P (2007) Adenosine closes the K+ channel KCa3.1 in human lung mast cells and inhibits their migration via the adenosine A2A receptor. Eur J Immunol 37:1653–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Duffy SM, Cruse G, Cockerill SL, Brightling CE, Bradding P (2008) Engagement of the EP2 prostanoid receptor closes the K+ channel KCa3.1 in human lung mast cells and attenuates their migration. Eur J Immunol 38:2548–2556

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Duffy SM, Cruse G, Lawley WJ, Bradding P (2005) Beta2-adrenoceptor regulation of the K+ channel iKCa1 in human mast cells. FASEB J 19:1006–1008

    CAS  PubMed  Google Scholar 

  150. de Kivit S, Saeland E, Kraneveld AD, van de Kant HJ, Schouten B et al (2012) Galectin-9 induced by dietary synbiotics is involved in suppression of allergic symptoms in mice and humans. Allergy 67:343–352

    PubMed  Google Scholar 

  151. Niki T, Tsutsui S, Hirose S, Aradono S, Sugimoto Y et al (2009) Galectin-9 is a high affinity IgE-binding lectin with anti-allergic effect by blocking IgE-antigen complex formation. J Biol Chem 284:32344–32352

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Gueck T, Seidel A, Baumann D, Meister A, Fuhrmann H (2004) Alterations of mast cell mediator production and release by gamma-linolenic and docosahexaenoic acid. Vet Dermatol 15:309–314

    PubMed  Google Scholar 

  153. van den Elsen LW, Nusse Y, Balvers M, Redegeld FA, Knol EF et al (2013) n-3 Long-chain PUFA reduce allergy-related mediator release by human mast cells in vitro via inhibition of reactive oxygen species. Br J Nutr 109(10):1821–31

    Google Scholar 

  154. Connor TJ, Leonard BE (1998) Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci 62:583–606

    CAS  PubMed  Google Scholar 

  155. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Li M, Soczynska JK, Kennedy SH (2011) Inflammatory biomarkers in depression: an opportunity for novel therapeutic interventions. Curr Psychiatry Rep 13:316–320

    PubMed  Google Scholar 

  157. Capuron L, Dantzer R (2003) Cytokines and depression: the need for a new paradigm. Brain Behav Immun 17(Suppl 1):S119–S124

    CAS  PubMed  Google Scholar 

  158. Hernandez ME, Mendieta D, Martinez-Fong D, Loria F, Moreno J et al (2008) Variations in circulating cytokine levels during 52 week course of treatment with SSRI for major depressive disorder. Eur Neuropsychopharmacol 18:917–924

    CAS  PubMed  Google Scholar 

  159. De Herdt V, Bogaert S, Bracke KR, Raedt R, De Vos M et al (2009) Effects of vagus nerve stimulation on pro- and anti-inflammatory cytokine induction in patients with refractory epilepsy. J Neuroimmunol 214:104–108

    PubMed  Google Scholar 

  160. Majoie HJ, Rijkers K, Berfelo MW, Hulsman JA, Myint A et al (2011) Vagus nerve stimulation in refractory epilepsy: effects on pro- and anti-inflammatory cytokines in peripheral blood. Neuroimmunomodulation 18:52–56

    CAS  PubMed  Google Scholar 

  161. Obradovic D, Gronemeyer H, Lutz B, Rein T (2006) Cross-talk of vitamin D and glucocorticoids in hippocampal cells. J Neurochem 96:500–509

    CAS  PubMed  Google Scholar 

  162. Jeffery LE, Wood AM, Qureshi OS, Hou TZ, Gardner D et al (2012) Availability of 25-hydroxyvitamin D(3) to APCs controls the balance between regulatory and inflammatory T cell responses. J Immunol 189:5155–5164

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Yu C, Fedoric B, Anderson PH, Lopez AF, Grimbaldeston MA (2011) Vitamin D(3) signalling to mast cells: a new regulatory axis. Int J Biochem Cell Biol 43:41–46

    CAS  PubMed  Google Scholar 

  164. Beck FW, Prasad AS, Kaplan J, Fitzgerald JT, Brewer GJ (1997) Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am J Physiol 272:E1002–E1007

    CAS  PubMed  Google Scholar 

  165. Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S et al (2008) Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 97:149–176

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Forsythe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Forsythe, P. (2014). Nutraceutical Regulation of the Neuroimmunoendocrine Super-system. In: Folkerts, G., Garssen, J. (eds) Pharma-Nutrition. AAPS Advances in the Pharmaceutical Sciences Series, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-06151-1_21

Download citation

Publish with us

Policies and ethics