Skip to main content

GPU: Accelerated Computation Routines for Quantum Trajectories Method

  • Chapter
  • First Online:
Numerical Computations with GPUs

Abstract

The chapter describes a Monte Carlo method’s implementation for analyzing the dynamics of open quantum systems—so-called quantum trajectories method. The discussed implementation is realized with use of the CUDA technology. It should be pointed out that using GPU in this approach allows to increase the performance of the quantum trajectories method’s simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalibard, J., Castin, Y., Molmer, K.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68, 580 (1992)

    Article  Google Scholar 

  2. Dum, R., Zoller, R., Ritsch, H.: Monte Carlo simulation of the atomic master equation for spontaneous emission. Phys. Rev. A 45, 4879 (1992)

    Article  Google Scholar 

  3. Frauchiger, D., Renner, R., Troyer, M.: True randomness from realistic quantum devices. arXiv:1311.4547 (2013)

    Google Scholar 

  4. Garraway, B.M., Knight, P.L.: Evolution of quantum superpositions in open environments: quantum trajectories, jumps, and localization in phase space. Phys. Rev. A 50, 2548–2563 (1994)

    Article  Google Scholar 

  5. Harris, M.: Optimizing Parallel Reduction in CUDA. http://developer.download.nvidia.com/compute/cuda/1_1/Website/projects/reduction/doc/reduction.pdf (2007)

  6. Ibrahim, Z.B., Suleiman, M.B., Othman, K.I.: Fixed coefficients block backward differentiation formulas for the numerical solution of stiff ordinary differential equations. Eur. J. Sci. Res. 21(3), 508–520 (2008)

    Google Scholar 

  7. ID Quantique SA: Quantis. http://www.idquantique.com/random-number-generators/products.html (2013)

  8. Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)

    Article  Google Scholar 

  9. L’Ecuyer P., Simard R., Chen J.E., Kelton W.W.: An object-oriented random-number package with many long streams and substreams. Oper. Res. 50(6), 1073–1075. http://pubsonline.informs.org/toc/opre/50/6 (2002)

  10. Marsaglia, G.: Xorshift RNGs. J. Stat. Softw. 8(14), 1–6 (2003)

    Google Scholar 

  11. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  12. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculation by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  13. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  14. NVIDIA, CURAND Toolkit Documentation. http://docs.nvidia.com/cuda/curand/index.html (2013)

  15. Pattabiraman, B., Umbreit, S., Wei-keng, L., Rasio, F., Kalogera, V., Memik, G., Choudhary, A.: GPU-accelerated Monte Carlo simulations of dense stellar systems. In: Innovative Parallel Computing, IEEE InPar 2012, San Jose, CA, pp. 1–10 (2012)

    Google Scholar 

  16. Saito, M.: A variant of Mersenne twister suitable for graphic processors. arXiv:1005.4973v2 (2010)

    Google Scholar 

  17. Schacka, R., Brun, T.A.: A C++ library using quantum trajectories to solve quantum master equations. Comput. Phys. Commun. 102, 210–228 (1997)

    Article  Google Scholar 

  18. Tan, S.M.: A computational toolbox for quantum and atomic optics. J. Opt. B Quantum Semiclassical Opt. 1(4), 424 (1999)

    Article  Google Scholar 

  19. Vukics, A.: C++QEDv2: the multi-array concept and compile-time algorithms in the definition of composite quantum systems. Comput. Phys. Commun. 183, 1381–1396 (2012)

    Article  Google Scholar 

  20. Vukics, A., Ritsch, H.: C++QED: an object-oriented framework for wave-function simulations of cavity QED systems. Eur. Phys. J. D 44, 585–599 (2007)

    Article  Google Scholar 

  21. Wyatt, R.E.: Quantum Dynamics with Trajectories. Springer, New York (2005)

    MATH  Google Scholar 

  22. Yang, B., Lu, K., Liu, J., Wang, X., Gong, C.: GPU accelerated Monte Carlo simulation of deep penetration neutron transport. In: Parallel Distributed and Grid Computing (PDGC), 2nd IEEE International Conference, pp. 899–904 (2012)

    Google Scholar 

  23. Yatim, S.A.M., Ibrahim, Z.B., Othman, K.I., Ismail, F.: Fifth order variable step block backward differentiation formulae for solving stiff ODEs. In: World Academy of Science, Engineering and Technology, vol. 38, pp. 280–282 (2010)

    Google Scholar 

  24. Yatim, S.A.M., Ibrahim, Z.B., Othman, K.I., Suleiman, M.B.: Numerical solution of extended block backward differentiation formulae for solving stiff ODEs. In: Proceedings of the World Congress on Engineering, WCE 2012, vol. I, London, 4–6 July 2012

    Google Scholar 

  25. Zhong, Z., Talamo, A., Gohar, Y.: Monte Carlo and deterministic computational methods for the calculation of the effective delayed neutron fraction. Comput. Phys. Commun. 184(7), 1660–1665 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank for useful discussions with the Q-INFO group at the Institute of Control and Computation Engineering (ISSI) of the University of Zielona Góra, Poland. We would like also to thank to anonymous referees for useful comments on the preliminary version of this chapter. The numerical results were done using the hardware and software available at the “GPU μ-Lab” located at the Institute of Control and Computation Engineering of the University of Zielona Góra, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Sawerwain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wiśniewska, J., Sawerwain, M. (2014). GPU: Accelerated Computation Routines for Quantum Trajectories Method. In: Kindratenko, V. (eds) Numerical Computations with GPUs. Springer, Cham. https://doi.org/10.1007/978-3-319-06548-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06548-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06547-2

  • Online ISBN: 978-3-319-06548-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics