Skip to main content

Acting on the World: Understanding How Agents Use Information to Guide Their Action

  • Chapter
  • First Online:
From Animals to Robots and Back: Reflections on Hard Problems in the Study of Cognition

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 22))

  • 745 Accesses

Abstract

Most animals navigate a dynamic and shifting sea of information provided by their environment, their food or prey and other animals. How do they work out, which pieces of information are the most important or of most interest to them, and gather information on those parts to guide their action later? In this essay, I briefly outline what we already know about how animals use information flexibly and efficiently. I then discuss a few of the unsolved problems relating to how animals collect information by directing their attention or exploration selectively, before suggesting some approaches which might be useful in unravelling these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although animals can generalize somewhat between learned stimuli.

  2. 2.

    Note that while it is easier to think about these processes as sequential, they certainly occur in parallel in nature.

  3. 3.

    That is, interacting with the environment without an immediate goal other than the collection of information.

References

  • Avarguès-Weber A, Dyer AG, Giurfa M (2011) Conceptualization of above and below relationships by an insect. Proc Royal Soc B Biol Sci 278(1707):898–905

    Article  Google Scholar 

  • Bellman R (1961) Adaptive control processes: a guided tour. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  • Benjamin SP, Zschokke S (2004) Homology, behaviour and spider webs: web construction behaviour of Linyphia hortensis and L. triangularis (Araneae: Linyphiidae) and its evolutionary significance. J Evol Biol 17(1):120–130

    Article  Google Scholar 

  • Bird CD, Emery NJ (2009a), Insightful problem solving and creative tool modification by captive nontool-using rooks. Proc Nat Acad Sci USA 106(25):10,370–10,375

    Google Scholar 

  • Bird CD, Emery NJ (2009b) Rooks use stones to raise the water level to reach a floating worm. Curr Biol 19:1410–1414

    Article  Google Scholar 

  • Bluff LA, Troscianko J, Weir AAS, Kacelnik A, Rutz C (2010) Tool use by wild new Caledonian crows Corvus moneduloides at natural foraging sites. Proc R Soc B Biol Sci 277(1686): 1377–1385

    Google Scholar 

  • Bonawitz E, van Schijndel T, Friel D, Schulz L (2012) Children balance theories and evidence in exploration, explanation, and learning. Cogn Psychol 64(4):215–234

    Article  Google Scholar 

  • Buckner C (2013) In search of balance: a review of Povinellis world without weight. Biol Philos 28(1):145–152

    Article  Google Scholar 

  • Cacchione T, Call J (2010) Intuitions about gravity and solidity in great apes: the tubes task. Dev Sci 13(2):320–330

    Article  Google Scholar 

  • Cacchione T, Call J, Zingg R (2009) Gravity and solidity in four great ape species (Gorilla gorilla, Pongo pygmaeus, Pan troglodytes, Pan paniscus): Vertical and horizontal variations of the table task. J Comp Psychol 123(2):168–180

    Article  Google Scholar 

  • Chappell J, Hawes N (2012) Biological and artificial cognition: what can we learn about mechanisms by modelling physical cognition problems using artificial intelligence planning techniques? Philos Trans R Soc Lond B Biol Sci 367(1603):2723–2732

    Article  Google Scholar 

  • Chappell J, Kacelnik A (2002) Tool selectivity in a non-primate, the new Caledonian crow (Corvus moneduloides). Anim Cogn 5(2):71–78

    Article  Google Scholar 

  • Chappell J, Kacelnik A (2004) Selection of tool diameter by new Caledonian crows Corvus moneduloides. Anim Cogn 7(2):121–127

    Article  Google Scholar 

  • Chappell J, Sloman A (2007) Natural and artificial meta-configured altricial information-processing systems. Int J Unconventional Comput 3(3):211–239

    Google Scholar 

  • Chappell J, Thorpe S (2010) AI-inspired biology: does AI have something to contribute to biology? In: Proceedings of the international symposium on AI inspired biology: a symposium at the AISB 2010 Convention, Leicester, UK, SSAISB.

    Google Scholar 

  • Chappell J, Demery ZP, Arriola-Rios V, Sloman A (2012) How to build an information gathering and processing system: lessons from naturally and artificially intelligent systems. Behav Process 89(2):179–186

    Article  Google Scholar 

  • Chittka L, Jensen K (2011) Animal cognition: concepts from apes to bees. Curr Biol 21(3): R116–119

    Google Scholar 

  • Cook C, Goodman ND, Schulz LE (2011) Where science starts: spontaneous experiments in preschoolers’ exploratory play. Cognition 120(3):341–349

    Article  Google Scholar 

  • Demery ZP, Chappell J, Martin GR (2011) Vision, touch and object manipulation in Senegal parrots Poicephalus senegalus. Proce R Soci B Biol Sci 278:3687–3693

    Article  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Ann Rev Neurosci 18:193–222

    Article  Google Scholar 

  • Dukas R (2002) Behavioural and ecological consequences of limited attention. Philos Trans R Soc Lond B Biol Sci 357(1427):1539–1547

    Article  Google Scholar 

  • Dukas R, Kamil AC (2000) The cost of limited attention in blue jays. Behav Ecol 11(5):502–506

    Article  Google Scholar 

  • Dunbar RIM, McAdam MR, O’connell S (2005) Mental rehearsal in great apes (Pan troglodytes and Pongo pygmaeus) and children. Behav Process 69(3):323–330

    Article  Google Scholar 

  • Eberhard WG (1971) The ecology of the web of Uloborus diversus (Araneae: Uloboridae). Oecologia 6(4):328–342

    Article  Google Scholar 

  • Fragaszy D, Johnson-Pynn J, Hirsh E, Brakke K (2003) Strategic navigation of two-dimensional alley mazes: comparing capuchin monkeys and chimpanzees. Anim Cogn 6(3):149–160

    Article  Google Scholar 

  • Fragaszy DM, Kennedy E, Murnane A, Menzel C, Brewer G, Johnson-Pynn J, Hopkins W (2009) Navigating two-dimensional mazes: chimpanzees (Pan troglodytes) and capuchins (Cebus apella sp.) profit from experience differently. Anim Cogn 12(3):491–504

    Article  Google Scholar 

  • Gibson JJ (1977) The theory of affordances. The ecological approach to visual perception. Lawrence Erlbaum Associates, London, pp 127–143

    Google Scholar 

  • Grant RA, Mitchinson B, Fox CW, Prescott TJ (2009) Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. J Neurophysiol 101(2):862–874

    Article  Google Scholar 

  • Hanus D, Call J (2008) Chimpanzees infer the location of a reward on the basis of the effect of its weight. Curr Biol 18(9):R370–R372

    Article  Google Scholar 

  • Hanus D, Call J (2011) Chimpanzee problem-solving: contrasting the use of causal and arbitrary cues. Anim cogn 14(6):871–878

    Article  Google Scholar 

  • Heinke D, Humphreys GW (2003) Attention, spatial representation, and visual neglect: simulating emergent attention and spatial memory in the selective attention for identification model (saim). Psychol Rev 110(1):29–87

    Article  Google Scholar 

  • Held SD, Å pinka M (2011) Animal play and animal welfare. Anim Behav 81(5):891–899

    Article  Google Scholar 

  • Keagy J, Savard JF, Borgia G (2011) Complex relationship between multiple measures of cognitive ability and male mating success in satin bowerbirds, Ptilonorhynchus violaceus. Anim Behav 81(5):1063–1070

    Article  Google Scholar 

  • Kirsh D, Maglio P (1994) On distinguishing epistemic from pragmatic action. Cogn Sci 18(4): 513–549, doi:10.1207/s15516709cog1804_1. http://dx.doi.org/10.1207/s15516709cog1804_1

  • Kundey SMA, de Los Reyes A (2009) Domesticated dogs’ (Canis familiaris) use of the solidity principle. Anim Cogn 13(3):497–505

    Article  Google Scholar 

  • Martin GR (2007) Visual fields and their functions in birds. J Ornithol 148(S2):547–562

    Article  Google Scholar 

  • Moore CW (1977) The life cycle, habitat and variation in selected web parameters in the spider, Nephila clavipes Koch (Araneidae). Am Midl Nat 98(1):95–108

    Article  Google Scholar 

  • Pearson MJ, Pipe AG, Melhuish C, Mitchinson B, Prescott TJ (2007) Whiskerbot: a robotic active touch system modeled on the Rat Whisker sensory system. Adapt Behav 15(3):223–240

    Article  Google Scholar 

  • Penn DC, Povinelli DJ (2007) Causal cognition in human and nonhuman animals: a comparative, critical review. Ann Rev Psychol 58:97–118

    Article  Google Scholar 

  • Pepperberg IM (1987) Acquisition of the same different concept by an African gray parrot (Psittacus erithacus)—learning with respect to categories of color, shape, and material. Learn Behav 15(4):423–432

    Article  Google Scholar 

  • Perlovsky L (1998) Conundrum of combinatorial complexity. IEEE Trans Pattern Anal Mach Intell 20(6):666–670

    Article  Google Scholar 

  • Povinelli D (2011) World without weight: perspectives on an alien mind. Oxford University Press, Oxford

    Google Scholar 

  • Power TG (2000) Play and exploration in children and animals. Lawrence Erlbaum Associates, London

    Google Scholar 

  • Sandoval C (1994) Plasticity in web design in the spider Parawixia bistriata: a response to variable prey type. Funct Ecol 8(6):701–707

    Article  Google Scholar 

  • Schrauf C, Call J (2011) Great apes use weight as a cue to find hidden food. Am J Primatol 73(4):323–334

    Article  Google Scholar 

  • Seed AM, Call J, Emery NJ, Clayton NS (2009) Chimpanzees solve the trap problem when the confound of tool-use is removed. J Exp Psychol Anim Behav Process 35(1):23–34

    Article  Google Scholar 

  • Sloman A (1999) What sort of architecture is required for a human-like agent. In: Wooldridge M, Rao A (eds) Foundations of rational agency. Kluwer Academic Publishers, Dordrecht, pp 35–52

    Google Scholar 

  • Sloman A (2005) The design-based approach to the study of mind (in humans, other animals, and machines), including the study of behaviour involving mental processes. http://cs.bham.ac.uk/research/projects/cogaff/misc/design-based-approach.html

  • Sloman A (2011) What’s information, for an organism or intelligent machine? How can a machine or organism mean? In: Dodig-Crnkovic G, Burgin M (eds) Information and computation. World Scientific, New Jersey, pp 393–438

    Google Scholar 

  • Sloman A, Chappell J (2007) Computational cognitive epigenetics. Behav Brain Sci 30(4):375–376

    Article  Google Scholar 

  • Spelke ES, Kinzler KD (2007) Core knowledge. Dev Sci 10(1):89–96

    Article  Google Scholar 

  • Tecwyn EC, Thorpe SKS, Chappell J (2012) What cognitive strategies do orangutans (Pongo pygmaeus) use to solve a trial-unique puzzle-tube task incorporating multiple obstacles? Anim Cogn 15(1):121–133

    Article  Google Scholar 

  • Thorpe SKS, Crompton RH (2005) Locomotor ecology of wild orang-utans (Pongo pygmaeus abelii) in the Gunung Leuser ecosystem, Sumatra, Indonesia: A multivariate analysis using log-linear modelling. Am J Phys Anthropol 127:58–78

    Article  Google Scholar 

  • Thorpe SKS, Crompton RH (2006) Orangutan positional behavior and the nature of Arboreal locomotion in Hominoidea. Am J Phys Anthropol 131:384–401

    Article  Google Scholar 

  • Thorpe SKS, Crompton RH, Alexander RM (2007) Orangutans utilise compliant branches to lower the energetic cost of locomotion. Biol Lett 3:253–256

    Article  Google Scholar 

  • Troscianko J, von Bayern AM, Chappell J, Rutz C, Martin GR (2013) Extreme binocular vision and a straight bill facilitate tool use in new caledonian crows. Nat Commun 3:1110

    Article  Google Scholar 

  • Webb B (2000) What does robotics offer animal behaviour? Anim Behav 60(5):545–558

    Article  Google Scholar 

  • Weir AAS, Chappell J, Kacelnik A (2002) Shaping of hooks in new Caledonian crows. Science 297(5583):981

    Article  Google Scholar 

Download references

Acknowledgments

First, I would like to acknowledge my deep gratitude to Aaron Sloman for many fascinating and stimulating discussions about information processing, evolution and exploration (among many other topics). These conversations have helped me helped me to approach these problems in a new and more productive way. I would also like to thank Nick Hawes, Zoe Demery and Emma Tecwyn for productive discussions on these topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jackie Chappell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chappell, J. (2014). Acting on the World: Understanding How Agents Use Information to Guide Their Action. In: Wyatt, J., Petters, D., Hogg, D. (eds) From Animals to Robots and Back: Reflections on Hard Problems in the Study of Cognition. Cognitive Systems Monographs, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-06614-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06614-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06613-4

  • Online ISBN: 978-3-319-06614-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics