Skip to main content

Optimal Pulse Shaping for Ultrafast Laser Interaction with Quantum Systems

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science XI

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 109))

  • 793 Accesses

Abstract

Coherent control method steers a quantum system to a desirable final quantum state among a number of final states otherwise possible in a given light-matter interaction, by using a specially shaped light form programmed in its spectral and/or temporal domain. In this chapter, we briefly review a number of light-form shaping methods previously considered for coherent control of ultra-fast laser interaction with atoms, and provide their application examples along with their experimental demonstrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We notice that Fourier domain and frequency domain have the same physical meaning in this chapter.

  2. 2.

    (field) means that the description is about electric field. Readers should care whether (field) or (intensity) arise at the end of a description.

  3. 3.

    Four-photon sequential path is \(3\text {S}{-}4\text {S}-7\text {P}\) \(2+1\) photon process in addition to \(7\text {P}{-}4\text {S}\) one-photon de-excitation. In this experiment, several order of magnitude is smaller than two-photon direct path.

  4. 4.

    The linear spectral chirp \(\varPhi ''\) in (4.3) and \(a_2\) here is identical parameter.

  5. 5.

    For more detailed description, we would recommend readers to read [13].

  6. 6.

    Three ultra-fast pulses are incident on the target, with separately controllable pico-second scale time delays \(\tau _1\) and \(\tau _2\) between each consecutive pulse. The excited states induced by each pulse are interfered and the final fluorescence signal \(I(\tau _1, \tau _2)\) is recorded. Two-dimensional Fourier transform of \(I(\tau _1, \tau _2)\) acquires both amplitude and phase information. Detailed theoretical description on this experiment can be found from [22].

References

  1. C.J. Bardeen et al., Feedback quantum control of molecular electronic population transfer. Chem. Phys. Lett. 280, 151–158 (1997)

    Article  ADS  Google Scholar 

  2. A. Assion et al., Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919–922 (1998)

    Article  ADS  Google Scholar 

  3. D. Meshulach, Y. Silberberg, Coherent quantum control of two-photon transitions by a femtosecond laser puse. Nature 396, 239–242 (1998)

    Google Scholar 

  4. G. Imeshev, M.A. Arbore, M.M. Fejer, A. Galvanauskas, M. Fermann, D. Harter, Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping. J. Opt. Soc. Am. B. 17, 304–318 (2000)

    Article  ADS  Google Scholar 

  5. S. Cialdi, M. Petrarca, C. Vicario, High-power third-harmonic flat pulse laser generation. Opt. Lett. 31, 2885–2887 (2006)

    Article  ADS  Google Scholar 

  6. N. Dudovich, B. Dayan, S.M. Gallagher-Faeder, Y. Silberberg, Transform-limited pulses are not optimal for resonant multiphoton transitions. Phys. Rev. Lett. 86, 47–50 (2001)

    Article  ADS  Google Scholar 

  7. S. Lee, J. Lim, C.Y. Park, J. Ahn, Strong-field quantum control of 2 \(+\) 1 photon absorption of atomic sodium. Opt. Express 19, 2266–2277 (2011)

    Article  ADS  Google Scholar 

  8. B. Chang. Chen, S.H. Lim, Optimal laser pulse shaping for interferometric multiplex coherent anti-Stokes Raman scattering microscopy. J. Phys. Chem. B 112, 3653–3661 (2008)

    Article  Google Scholar 

  9. J.P. Ogilvie et al., Use of coherent control for selective two-photon fluorescence microscopy in live organisms. Opt. Express 14, 759–766 (2006)

    Article  ADS  Google Scholar 

  10. C. Rangan, P.H. Bucksbaum, Optimally shaped terahertz pulses for phase retrieval in a Rydberg-atom data register. Phys. Rev. A 64, 033417 (2001)

    Article  ADS  Google Scholar 

  11. B.E. Cole, J.B. Williams, B.T. King, M.S. Sherwin, C.R. Stanley, Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature 410, 60–63 (2001)

    Article  ADS  Google Scholar 

  12. W.S. Warren, H. Rabitz, M. Dahleh, Coherent control of quantum dynamics: the dream is alive. Science 259, 1581–1589 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. S. Lee, J. Lim, J. Ahn, Strong-field two-photon absorption in atomic cesium: an analytical control approach. Opt. Express 17, 7648–7657 (2009)

    Article  ADS  Google Scholar 

  14. A.M. Weiner, Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929 (2000)

    Article  ADS  Google Scholar 

  15. A.M. Weiner, Ultrafast optical pulse shaping: a tutorial review. Opt. Comm. 284, 3669–3692 (2011)

    Article  ADS  Google Scholar 

  16. P. Tournois, Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems. Opt. Comm. 140, 245–249 (1997)

    Article  ADS  Google Scholar 

  17. F. Verluise et al., Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. Opt. Lett. 25, 575–577 (2000)

    Article  ADS  Google Scholar 

  18. T. Brixner, G. Gerber, Femtosecond polarization pulse shaping. Opt. Lett. 26, 557–559 (2001)

    Article  ADS  Google Scholar 

  19. J.C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, (Academic press, 1996), pp. 1–4

    Google Scholar 

  20. J. Lim, K. Lee, J. Ahn, Ultrafast Rabi flopping in a three-level energy ladder. Opt. Lett. 37, 3378–3380 (2012)

    Article  ADS  Google Scholar 

  21. J. Lim, H. Lee, S. Lee, J. Ahn, Quantum control in two-dimensional Fourier-transform spectroscopy. Phys. Rev. A. 84, 013425 (2011)

    Article  ADS  Google Scholar 

  22. J. Lim, H. Lee, J. Kim, S. Lee, J. Ahn, Coherent transients mimicked by two-photon coherent control of a three-level system. Phys. Rev. A. 83, 053429 (2011)

    Article  ADS  Google Scholar 

  23. A.M. Weiner, J.P. Heritage, E.M. Kirschner, High-resolution femtosecond pulse shaping. J. Opt. Soc. Am. B. 5, 1563 (1988)

    Article  ADS  Google Scholar 

  24. L. Xu et al., Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper. IEEE J. Quantum Electron. 36, 893 (2000)

    Article  ADS  Google Scholar 

  25. M.M. Wefers, K.A. Nelson, Programmable phase and amplitude femtosecond pulse shaping. Opt. Lett. 18, 2032 (1993)

    Article  ADS  Google Scholar 

  26. J.W. Wilson, P. Schlup, R.A. Bartels, Ultrafast phase and amplitude pulse shaping with a single, one-dimensional, high-resolution phase mask. Opt. Express. 15, 8979 (2007)

    Article  ADS  Google Scholar 

  27. A.M. Weiner, Femtosecond optical pulse shaping and processing. Prg. Quant. Electr. 19, 161–237 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  28. M.M. Wefers, K.A. Nelson, Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators. J. Opt. Soc. Am. B. 12, 1343 (1995)

    Article  ADS  Google Scholar 

  29. C. Tralleor-Herrero et al., Coherent control of strong field multiphoton absorption in the presence of dynamic Stark shifts. Phys. Rev. A. 71, 013423 (2005)

    Article  ADS  Google Scholar 

  30. B. Chatel, J. Degert, S. Stock, B. Girad, Competition between sequential and direct paths in a two-photon transition. Phys. Rev. A. 68, 041402(R) (2003)

    Article  ADS  Google Scholar 

  31. C. Trallero-Herrero, J.L. Cohen, T. Weinacht, Strong-field atomic phase matching. Phys. Rev. Lett. 96, 063603 (2006)

    Article  ADS  Google Scholar 

  32. S. Lee, J. Lim, J. Ahn, Strong-field two-photon transition by phase shaing. Phys. Rev. A. 82, 023408 (2010)

    Article  ADS  Google Scholar 

  33. S. Zamith, J. Degert, S. Stock, B.D. Beauvoir, Observation of coherent transients in ultrashort chirped excitation of an undamped two-level system. Phys. Rev. Lett. 87, 033001 (2001)

    Article  ADS  Google Scholar 

  34. J. Degert, W. Wohlleben, B. Chatel, M. Motzkus, B. Girad, Realization of a time-domain Fresnel lens with coherent control. Phys. Rev. Lett. 89, 203003 (2002)

    Article  ADS  Google Scholar 

  35. N. Dudovich, D. Oron, Y. Silberberg, Coherent transient enhancement of optically induced resonant transitions. Phys. Rev. Lett. 88, 123004 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaewook Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kim, H., Lee, H., Lim, J., Ahn, J. (2015). Optimal Pulse Shaping for Ultrafast Laser Interaction with Quantum Systems. In: Yamanouchi, K., Nam, C., Martin, P. (eds) Progress in Ultrafast Intense Laser Science XI. Springer Series in Chemical Physics(), vol 109. Springer, Cham. https://doi.org/10.1007/978-3-319-06731-5_4

Download citation

Publish with us

Policies and ethics