Skip to main content

Discussion and Conclusion

  • Chapter
  • First Online:
Modelling the Short QT Syndrome Gene Mutations

Part of the book series: Springer Theses ((Springer Theses))

  • 442 Accesses

Abstract

The work presented in this thesis centres on the in silico investigation of arrhythmia substrates in the inherited cardiac condition: the short QT syndrome (SQTS). It has focused on the functional consequences of the gene mutations associated with the first three variants of the SQTS; SQT1, SQT2 and SQT3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brugada R, Hong K, Dumaine R, Cordeiro J, Gaita F, Borggrefe M et al (2004) Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109(1):30–35

    Article  Google Scholar 

  2. Hong K, Bjerregaard P, Gussak I, Brugada R (2005) Short QT syndrome and atrial fibrillation caused by mutation in KCNH2. J Cardiovasc Electrophysiol 16(4):394–396

    Article  Google Scholar 

  3. Sun Y, Quan X-Q, Fromme S, Cox RH, Zhang P, Zhang L et al (2011) A novel mutation in the KCNH2 gene associated with short QT syndrome. J Mol Cell Cardiol 50(3):433–441

    Article  Google Scholar 

  4. Bellocq C, van Ginneken ACG, Bezzina CR, Alders M, Escande D, Mannens MMAM et al (2004) Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109(20):2394–2397

    Article  Google Scholar 

  5. Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A et al (2005) A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 96(7):800–807

    Article  Google Scholar 

  6. Szabó G, Szentandrássy N, Bíró T, Tóth BI, Czifra G, Magyar J et al (2005) Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium. Pflugers Arch 450(5):307–316

    Article  Google Scholar 

  7. Kogan BY, Karplus WJ, Billett BS, Pang AT, Khan SS, Mandel WJ et al (1991) The role of diastolic outward current deactivation kinetics on the induction of spiral waves. Pacing Clin Electrophysiol 14(11 Pt 2):1688–1693

    Article  Google Scholar 

  8. Weiss DL, Seemann G, Sachse FB, Dössel O (2005) Modelling of short QT syndrome in a heterogeneous model of the human ventricular wall. Europace 7(Suppl 2):105–117

    Article  Google Scholar 

  9. Zhang H, Hancox JC (2004) In silico study of action potential and QT interval shortening due to loss of inactivation of the cardiac rapid delayed rectifier potassium current. Biochem Biophys Res Commun 322(2):693–699

    Article  Google Scholar 

  10. Schimpf R, Wolpert C, Gaita F, Giustetto C, Borggrefe M (2005) Short QT syndrome. Cardiovasc Res 67(3):357–366

    Article  Google Scholar 

  11. Bidoggia H, Maciel JP, Capalozza N, Mosca S, Blaksley EJ, Valverde E et al (2000) Sex differences on the electrocardiographic pattern of cardiac repolarization: possible role of testosterone. Am Heart J 140(4):678–683

    Article  Google Scholar 

  12. Hancox JC, Choisy SC, James AF (2009) Short QT interval linked to androgen misuse: wider significance and possible basis. Ann Noninvasive Electrocardiol 14(3):311–312

    Article  Google Scholar 

  13. Patel C, Antzelevitch C (2008) Cellular basis for arrhythmogenesis in an experimental model of the SQT1 form of the short QT syndrome. Heart Rhythm 5(4):585–590

    Article  Google Scholar 

  14. Gollob MH, Redpath CJ, Roberts JD (2011) The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol 57(7):802–812

    Article  Google Scholar 

  15. Patel U, Pavri BB (2009) Short QT syndrome: a review. Cardiol Rev 17(6):300–303

    Article  Google Scholar 

  16. Hancox JC, McPate MJ, Harchi A, Duncan RS, Dempsey CE, Witchel HJ, et al (2011) The short QT syndrome. In: Tripathi ON, Ravens U, Sanguinetti MC (eds). Heart rate and rhythm. Springer, Berlin, pp 431–449. http://www.springerlink.com/content/m8l86l8n3h81w43m/

  17. Jiang M, Xu X, Wang Y, Toyoda F, Liu X-S, Zhang M et al (2009) Dynamic partnership between KCNQ1 and KCNE1 and influence on cardiac IKs current amplitude by KCNE2. J Biol Chem 284(24):16452–16462

    Article  Google Scholar 

  18. Hancox JC, Levi AJ, Witchel HJ (1998) Time course and voltage dependence of expressed HERG current compared with native “rapid” delayed rectifier K current during the cardiac ventricular action potential. Pflugers Arch 436(6):843–853

    Article  Google Scholar 

  19. Glowatzki E, Fakler G, Brändle U, Rexhausen U, Zenner HP, Ruppersberg JP et al (1995) Subunit-dependent assembly of inward-rectifier K + channels. Proc Biol Sci 261(1361):251–261

    Article  Google Scholar 

  20. Yang J, Jan YN, Jan LY (1995) Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 15(6):1441–1447

    Article  Google Scholar 

  21. Anttonen O, Junttila J, Giustetto C, Gaita F, Linna E, Karsikas M et al (2009) T-Wave morphology in short QT syndrome. Ann Noninvasive Electrocardiol 14(3):262–267

    Article  Google Scholar 

  22. James AF, Choisy SCM, Hancox JC (2007) Recent advances in understanding sex differences in cardiac repolarization. Prog Biophys Mol Biol 94(3):265–319

    Article  Google Scholar 

  23. Sanguinetti MC, Curran ME, Spector PS, Keating MT (1996) Spectrum of HERG K + -channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci USA 93(5):2208–2212

    Article  ADS  Google Scholar 

  24. Levi AJ (1993) A role for sodium/calcium exchange in the action potential shortening caused by strophanthidin in guinea pig ventricular myocytes. Cardiovasc Res 27(3):471–481

    Article  ADS  Google Scholar 

  25. Garberoglio L, Giustetto C, Wolpert C, Gaita F (2007) Is acquired short QT due to digitalis intoxication responsible for malignant ventricular arrhythmias? J Electrocardiol 40(1):43–46

    Article  Google Scholar 

  26. Workman AJ, Kane KA, Rankin AC (2001) The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation. Cardiovasc Res 52(2):226–235

    Article  Google Scholar 

  27. Dhamoon AS, Jalife J (2005) The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm 2(3):316–324

    Article  Google Scholar 

  28. Noujaim SF, Pandit SV, Berenfeld O, Vikstrom K, Cerrone M, Mironov S et al (2007) Up-regulation of the inward rectifier K + current (I K1) in the mouse heart accelerates and stabilizes rotors. J Physiol (Lond) 578(Pt 1):315–326

    Google Scholar 

  29. Pandit SV, Berenfeld O, Anumonwo JMB, Zaritski RM, Kneller J, Nattel S et al (2005) Ionic determinants of functional reentry in a 2-D model of human atrial cells during simulated chronic atrial fibrillation. Biophys J 88(6):3806–3821

    Article  Google Scholar 

  30. ten Tusscher KHWJ, Panfilov AV (2006) Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol 291(3):1088–1100

    Article  Google Scholar 

  31. ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 286(4):1573–1589

    Article  Google Scholar 

  32. Ten Tusscher KHWJ, Panfilov AV (2006) Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. Phys Med Biol 51(23):6141–6156

    Article  Google Scholar 

  33. Taggart P, Sutton PM, Opthof T, Coronel R, Trimlett R, Pugsley W et al (2001) Transmural repolarisation in the left ventricle in humans during normoxia and ischaemia. Cardiovasc Res 50(3):454–462

    Article  Google Scholar 

  34. Antzelevitch C (2010) M cells in the human heart. Circ Res 106(5):815–817

    Article  Google Scholar 

  35. Drouin E, Charpentier F, Gauthier C, Laurent K, Le Marec H (1995) Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J Am Coll Cardiol 26(1):185–192

    Article  Google Scholar 

  36. Li GR, Feng J, Yue L, Carrier M (1998) Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle. Am J Physiol 275(2 Pt 2):369–377

    Google Scholar 

  37. Glukhov AV, Fedorov VV, Lou Q, Ravikumar VK, Kalish PW, Schuessler RB et al (2010) Transmural dispersion of repolarization in failing and nonfailing human ventricle. Circ Res 106(5):981–991

    Article  Google Scholar 

  38. Taggart P, Sutton PM, Opthof T, Coronel R, Trimlett R, Pugsley W et al (2000) Inhomogeneous transmural conduction during early ischaemia in patients with coronary artery disease. J Mol Cell Cardiol 32(4):621–630

    Article  Google Scholar 

  39. Zhang H, Kharche S, Holden AV, Hancox JC (2008) Repolarisation and vulnerability to re-entry in the human heart with short QT syndrome arising from KCNQ1 mutation–a simulation study. Prog Biophys Mol Biol 96(1–3):112–131

    Article  Google Scholar 

  40. Gima K, Rudy Y (2002) Ionic current basis of electrocardiographic waveforms: a model study. Circ Res 90(8):889–896

    Article  Google Scholar 

  41. Clements JC, Nenonen J, Li PKJ, Horácek BM (2004) Activation dynamics in anisotropic cardiac tissue via decoupling. Ann Biomed Eng 32(7):984–990

    Article  Google Scholar 

  42. Potse M, Dubé B, Richer J, Vinet A, Gulrajani RM (2006) A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng 53(12 Pt 1):2425–2435

    Article  Google Scholar 

  43. Boulakia M, Cazeau S, Fernández MA, Gerbeau J-F, Zemzemi N (2010) Mathematical modeling of electrocardiograms: a numerical study. Ann Biomed Eng 38(3):1071–1097

    Article  Google Scholar 

  44. Bourgault Y, Pierre C (2010) Comparing the bidomain and monodomain models in electro-cardiology through convergence analysis. INSMI. hal–00545888

    Google Scholar 

  45. Schimpf R, Antzelevitch C, Haghi D, Giustetto C, Pizzuti A, Gaita F et al (2008) Electromechanical coupling in patients with the short QT syndrome: further insights into the mechanoelectrical hypothesis of the U wave. Heart Rhythm 5(2):241–245

    Article  Google Scholar 

  46. Pugsley MK, Curtis MJ (2007) Safety pharmacology methods: anticipating the transition from long QT (LQTS) to short QT syndromes (SQTS)? J Pharmacol Toxicol Methods 56(2):87–90

    Article  Google Scholar 

  47. Shah RR (2010) Drug-induced QT interval shortening: potential harbinger of proarrhythmia and regulatory perspectives. Br J Pharmacol 159(1):58–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Adeniran .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Adeniran, I. (2014). Discussion and Conclusion. In: Modelling the Short QT Syndrome Gene Mutations. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07200-5_10

Download citation

Publish with us

Policies and ethics