Skip to main content

Brazilian Agriculture and Its Sustainability

  • Chapter
  • First Online:
International Food Law and Policy

Abstract

Brazil has emerged in this century as a powerhouse, developing a high productivity tropical agriculture, and today is one of the key players in the global food system. However, such increase of Brazilian agriculture was not without costs. One of the most important consequences was the loss of original vegetation and all the ecosystem services linked to this loss. Most of the Atlantic Forest was converted in urban or agricultural areas; approximately half of the Cerrado was also already converted, and more than 15 % of the Amazon forest was also lost. Coupled with loss of vegetation there is also environmental problems linked to agricultural practices such as: burning and heavy use of pesticides, and to a lesser extent of mineral fertilizers. However, the decoupling of agriculture production and deforestation observed in several regions of the country give us hope that in the future agriculture could advance without further vegetation loss. This mean that intensification will take place, and such has to be conducted under the umbrella of what is called “sustainable agriculture”, which in turn is a series of practices aimed to give to an agroecosystem more complexity in order to mimic natural ecosystems. Among these practices several of them have already been adopted in large scale in the country, especially no-till, crop rotation, and lately crop-livestock systems. If Brazil succeeds in overcoming this challenge, it will not only benefit itself, but also other tropical countries that are pursuing such sustainability and, ultimately the entire world, given Brazil's importance in the global food system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Gibbs et al. (2010).

  2. 2.

    Ibid.

  3. 3.

    See Rudel et al. (2009).

  4. 4.

    See Martinelli (2012).

  5. 5.

    See Gasques et al. (2004).

  6. 6.

    See Chaddad and Jank (2006) and Barros (2008).

  7. 7.

    See Martinelli et al. (2010) and Lapola et al. (2014).

  8. 8.

    See FAO (2014).

  9. 9.

    See Forest Resources Association—FRA (2010).

  10. 10.

    See da Silva et al. (2005).

  11. 11.

    See Rocha et al. (2004), (Bonan 2008), and Cox and Jeffery (2010).

  12. 12.

    See Neill et al. (1996), Ometto et al. (2005), and Houghton et al. (2009).

  13. 13.

    See Oliveira-Filho and Fontes (2000).

  14. 14.

    See Myers et al. (2000) and Murray-Smith et al. (2009).

  15. 15.

    See Ribeiro et al. (2009).

  16. 16.

    See Morellato and Haddad (2000), Galindo-Leal and Câmara (2003), and Teixeira et al. (2009).

  17. 17.

    See Murray-Smith et al. (2009).

  18. 18.

    See Mittermeier et al. (2005).

  19. 19.

    See Morellato and Haddad (2000) and Scarano (2002).

  20. 20.

    See Kissinger (2014).

  21. 21.

    See Ministry of Environment (2013).

  22. 22.

    See Martinelli et al. (2010).

  23. 23.

    See Martinelli (2012).

  24. 24.

    See Swinton et al. (2007) and Power (2010).

  25. 25.

    See Gallai et al. (2009).

  26. 26.

    See Ribeiro et al. (2009).

  27. 27.

    See Lapola et al. (2014).

  28. 28.

    See Hoorn et al. (2010) and Cheng et al. (2013).

  29. 29.

    See Santos et al. (2009), Hoorn et al. (2010), and Cheng et al. (2013); Sacek (2014).

  30. 30.

    See Hecht et al. (1988).

  31. 31.

    See Nepstad et al. (2014).

  32. 32.

    Ibid.

  33. 33.

    See Ribeiro et al. (2009).

  34. 34.

    See Murray-Smith et al. (2009).

  35. 35.

    See Ribeiro et al. (2009).

  36. 36.

    Ibid.

  37. 37.

    See Ribeiro et al. (2009) and Tabarelli et al. (1999).

  38. 38.

    See Ratter et al. (1997).

  39. 39.

    See Simon et al. (2009).

  40. 40.

    See Mendonça et al. (2008).

  41. 41.

    See Simon et al. (2009).

  42. 42.

    See Sousa et al. (2001).

  43. 43.

    See Sano et al. (2010).

  44. 44.

    See Brazilian Institute of Geography and Statistics (2012).

  45. 45.

    See Sano et al. (2010).

  46. 46.

    See Sousa et al. (2001).

  47. 47.

    See Sano et al. (2010).

  48. 48.

    See Lapola et al. (2014).

  49. 49.

    See Brazilian Institute of Geography and Statistics (2012).

  50. 50.

    See Ribeiro et al. (2009).

  51. 51.

    See Sano et al. (2010) and Lapola et al. (2014).

  52. 52.

    See Lapola et al. (2014).

  53. 53.

    See Nepstad et al. (2009, 2014), Barretto et al. (2013), and Lapola et al. (2014).

  54. 54.

    See Nepstad et al. (2014).

  55. 55.

    Ibid.

  56. 56.

    See Cançado et al. (2006), Goto et al. (2011), Riguera et al. (2011), Tsao et al. (2011), and Prado et al. (2012).

  57. 57.

    See Jacobson et al. (2012).

  58. 58.

    See Arbex et al. (2010).

  59. 59.

    See Barbosa et al. (2012).

  60. 60.

    See Magalhães et al. (2007) and Andrade et al. (2010).

  61. 61.

    See Dourado-Neto et al. (1999), de Oliveira et al. (2000), and Tominaga et al. (2002).

  62. 62.

    See Galdos et al. (2010).

  63. 63.

    See Mello et al. (2014).

  64. 64.

    See Crutzen and Andreae (1990).

  65. 65.

    See Artaxo et al. (2002) and Andreae et al. (2004).

  66. 66.

    See Schafer (2002).

  67. 67.

    See Roberts et al. (2001).

  68. 68.

    See Martins et al. (2009).

  69. 69.

    See Freitas et al. (2005).

  70. 70.

    See Camponogara et al. (2014).

  71. 71.

    See Martinelli (2012).

  72. 72.

    See Martinelli and Filoso (2009).

  73. 73.

    See Hartemink (2008) for a review.

  74. 74.

    See Schiesari and Grillitsch (2011).

  75. 75.

    See Schiesari and Grillitsch (2011).

  76. 76.

    See Schiesari and Grillitsch (2011).

  77. 77.

    See Galloway et al. (2008).

  78. 78.

    See Lapola et al. (2014).

  79. 79.

    See Dirzo and Raven (2003).

  80. 80.

    See Alves et al. (2003).

  81. 81.

    See Alves et al. (2003).

  82. 82.

    See Keating et al. (2010), Godfray et al. (2010), Power (2010), and Phalan et al. (2011).

  83. 83.

    See Tilman et al. (1997) and Scherr and McNeely (2008).

  84. 84.

    See Bayer et al. (2006) and Galdos et al. (2010).

  85. 85.

    See Diekow et al. (2005), Hungria and Vargas (2000), Garcıa-Préchac et al. (2004), and Bernoux et al. (2006).

  86. 86.

    See Brazilian Institute of Geography and Statistics (2012).

  87. 87.

    See Boddey et al. (2010).

  88. 88.

    See Zanatta et al. (2007) and Vieira et al. (2009).

  89. 89.

    See Hungria and Vargas (2000).

  90. 90.

    See Rosolem et al. (2004) and Jantalia et al. (2008).

  91. 91.

    See Carvalho et al. (2009).

  92. 92.

    See Balbinot-Junior et al. (2009).

  93. 93.

    See Carvalho et al. (2010b).

  94. 94.

    See Carvalho et al. (2010a).

References

  • Alves BJR, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252(1):1–9

    Article  Google Scholar 

  • Andrade TMB, Camargo PB, Silva DML, Piccolo MC et al (2010) Dynamics of dissolved forms of carbon and inorganic nitrogen in small watersheds of the coastal Atlantic Forest in Southeast Brazil. Water Air Soil Pollut 214(1–4):393–408. doi:10.1007/s11270-010-0431-z

    Google Scholar 

  • Andreae MO, Rosenfeld D, Artaxo P, Costa AA et al (2004) Smoking rain clouds over the Amazon. Science 303(5662):1337–1342. doi:10.1126/science.1092779

    Article  Google Scholar 

  • Arbex MA, Saldiva PHN, Pereira LAA, Braga ALF (2010) Impact of outdoor biomass air pollution on hypertension hospital admissions. J Epidemiol Commun Health 64(7):573–579. doi:10.1136/jech.2009.094342

    Article  Google Scholar 

  • Artaxo P, Martins JV, Yamasoe MA, Procópio AS et al (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J Geophys Res 107:1–14. doi:10.1029/2001JD000666

    Article  Google Scholar 

  • Balbinot-Junior AA, de Moraes A, da Veiga M, Pelissari A et al (2009) Integração lavoura-pecuária: intensificação de uso de áreas agrícolas. Cienc Rural 39(6):1925–1933. doi:10.1590/S0103-84782009005000107

    Article  Google Scholar 

  • Barbosa CMG, Terra-Filho M, de Albuquerque ALP, Di Giorgi D et al (2012) Burnt sugarcane harvesting – cardiovascular effects on a group of healthy workers, Brazil. PLoS One 7(9):158–170. doi:10.1371/journal.pone.0046142

    Article  Google Scholar 

  • Barretto AGOP, Berndes G, Sparovek G, Wirsenius S (2013) Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975–2006 period. Glob Change Biol 19(6):1804–1815. doi:10.1111/gcb.12174

    Article  Google Scholar 

  • Barros G (2008) Brazil: the challenges in becoming an agricultural superpower. In: Brainard L, Martinez-Diaz L (eds) Brazil as an economic superpower? Understanding Brazil’s changing role in the global economy. Brookings Institution Press, Washington, pp 2–35

    Google Scholar 

  • Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A et al (2006) Carbon sequestration in two Brazilian cerrado soils under no-till. Soil Tillage Res 86(2):237–245

    Article  Google Scholar 

  • Bernoux M, Cerri CC, Cerri CEP, Siqueira-Neto M et al (2006) Cropping systems, carbon sequestration and erosion in Brazil, a review. Agron Sustain Dev 26:1–8. doi:10.1051/agro

    Article  Google Scholar 

  • Boddey RM, Jantalia CP, Conceição PC, Zanatta JA et al (2010) Carbon accumulation at depth in ferralsols under zero-till subtropical agriculture. Glob Change Biol 16:784–795

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  Google Scholar 

  • Brazilian Institute of Geography and Statistics (IBGE) (2012) Sistema IBGE de Recuperação Automática. http://www.sidra.ibge.gov.br. Accessed 29 Sept 2014

  • Camponogara G, Silva Dias MAF, Carrió GG (2014) Relationship between Amazon biomass burning aerosols and rainfall over the La Plata Basin. Atmos Chem Phys 14:4397–4407

    Article  Google Scholar 

  • Cançado JED, Saldiva PHN, Pereira LAA, Lara LBLS et al (2006) The impact of sugar cane–burning emissions on the respiratory system of children and the elderly. Environ Health Perspect 114(5):725–729. doi:10.1289/ehp.8485

    Article  Google Scholar 

  • Carvalho FMV, de Marco P, Ferreira LG (2009) The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of Central Brazil. Biol Conserv 142(7):1392–1403. doi:10.1016/j.biocon.2009.01.031

    Article  Google Scholar 

  • Carvalho JLN, Raucci GS, Cerri CEP, Bernoux M et al (2010a) Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil Tillage Res 110(1):175–186. doi:10.1016/j.still.2010.07.011

    Article  Google Scholar 

  • Carvalho PCF, Anghinoni I, de Moraes A, de Souza ED et al (2010b) Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutr Cycl Agroecosyst 88(2):259–273. doi:10.1007/s10705-010-9360-x

    Article  Google Scholar 

  • Chaddad FR, Jank MS (2006) The evolution of agricultural policies and agribusiness development in Brazil. Choices 21(2):85–90

    Google Scholar 

  • Cheng H, Sinha A, Cruz FW, Wang X, Edwards RL et al (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun 4(1411):1–6. doi:10.1038/ncomms2415

    Google Scholar 

  • Cox PM, Jeffery HA (2010) Methane radiative forcing controls the allowable CO2 emissions for climate stabilization. Curr Opin Environ Sustain 2(5–6):404–408. doi:10.1016/j.cosust.2010.09.007

    Article  Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250(4988):1669–1678. doi:10.1126/science.250.4988.1669

    Article  Google Scholar 

  • da Silva JMC, Rylands AB, Fonseca GAB (2005) The fate of the Amazonian areas of endemism. Conserv Biol 19(3):689–694. doi:10.1111/j.1523-1739.2005.00705.x

    Article  Google Scholar 

  • de Oliveira JCM, Reichardt K, Bacchi OOS, Timm LC et al (2000) Nitrogen dynamics in a soil-sugar cane system. Sci Agric 57(3):467–472. doi:10.1590/S0103-90162000000300015

    Article  Google Scholar 

  • Diekow J, Mielniczuk J, Knicker H, Bayer C et al (2005) Soil C and N stocks as affected by cropping systems and nitrogen fertilisation in a Southern Brazil acrisol managed under no-tillage for 17 years. Soil Tillage Res 81(1):87–95. doi:10.1016/j.still.2004.05.003

    Article  Google Scholar 

  • Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28(1):137–167. doi:10.1146/annurev.energy.28.050302.105532

    Article  Google Scholar 

  • Dourado-Neto D, Timm LC, de Oliveira JCM, Reichardt K et al (1999) State-space approach for the analysis of soil water content and temperature in a sugarcane crop. Sci Agric 56(4):1215–1221

    Article  Google Scholar 

  • Food and Agriculture Organization (FAO) (2014) http://faostat.fao.org/site/291/default.aspx. Accessed 9 Sept 2014

  • Freitas SR, Longo KM, Silva Dias MAF, Silva Dias PL et al (2005) Monitoring the transport of biomass burning emissions in South America. Environ Fluid Mech 5:135–167

    Article  Google Scholar 

  • Galdos MV, Cerri CC, Lal R, Bernoux M et al (2010) Net greenhouse gas fluxes in Brazilian ethanol production systems. Glob Change Biol Bioenergy 2(1):37–44. doi:10.1111/j.1757-1707.2010.01037.x

    Article  Google Scholar 

  • Galindo-Leal C, Câmara IG (2003) The Atlantic Forest of South America: biodiversity status, threats and outlook. Island Press, Washington

    Google Scholar 

  • Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68(3):810–821

    Article  Google Scholar 

  • Galloway JN, Cai Z, Townsend AR, Freney JR et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  Google Scholar 

  • Garcıa-Préchac F, Ernst O, Siri-Prieto G, Terra JA (2004) Integrating no-till into crop–pasture rotations in Uruguay. Soil Tillage Res 77(1):1–13. doi:10.1016/j.still.2003.12.002

  • Gasques JG, Bastos ET, Bacchi MPR, Conceição JCPR (2004) Produtividade e fontes de crescimento da agricultura brasileira. Revista de Política Agrícola 3:73–90

    Google Scholar 

  • Gibbs HK, Ruesch AS, Achard F, Clayton MK et al (2010) Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci U S A 107(38):16732–16737

    Article  Google Scholar 

  • Global Forests Resources Assessment (2010) Main report. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Godfray HCJ, Crute IR, Haddad L, Lawrence D et al (2010) The future of the global food system. Philos Trans R Soc B 365(1554):2769–2777. doi:10.1098/rstb.2010.0180

    Article  Google Scholar 

  • Goto DM, Lança M, Obuti CA, Barbosa CMG et al (2011) Effects of biomass burning on nasal mucociliary clearance and mucus properties after sugarcane harvesting. Environ Res 111(5):664–669

    Article  Google Scholar 

  • Hartemink AE (2008) Sugarcane for bioethanol: soil and environmental issues. Adv Agron 99:125–182. doi:10.1016/S0065-2113(08)00403-3

    Article  Google Scholar 

  • Hecht SB, Norgaard RB, Possio C (1988) The economics of cattle ranching in Eastern Amazonia. Interciencia 13(5):233–240

    Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA et al (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931. doi:10.1126/science.1194585

    Article  Google Scholar 

  • Houghton RA, Hall F, Goetz SJ (2009) Importance of biomass in the global carbon cycle. J Geophys Res 114(G00E03):1–13. doi:10.1029/2009JG000935

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65(2–3):151–164

    Article  Google Scholar 

  • Jacobson LSV, Hacon SS, de Castro HA, Ignotti E et al (2012) Association between fine particulate matter and the peak expiratory flow of schoolchildren in the Brazilian subequatorial Amazon: a panel study. Environ Res 117:27–35

    Article  Google Scholar 

  • Jantalia CP, dos Santos HP, Urquiaga S, Boddey RM et al (2008) Fluxes of nitrous oxide from soil under different crop rotations and tillage systems in the south of Brazil. Nutr Cycl Agroecosyst 82(2):161–173

    Article  Google Scholar 

  • Keating BA, Carberry PS, Bindraban PS, Asseng S et al (2010) Eco-efficient agriculture: concepts, challenges, and opportunities. Crop Sci 50(Supplement 1):S–109–S–119. doi:10.2135/cropsci2009.10.0594

  • Kissinger G (2014) Case study: Atlantic Forest, Brazil. In: Shames S (ed) Financing strategies for integrated landscape investment. Eco Agriculture partners, on behalf of the landscapes for people, food and nature initiative, Washington

    Google Scholar 

  • Lapola DM, Martinelli LA, Peres CA, Ometto JPHB et al (2014) Pervasive transition of the Brazilian land-use system. Nat Clim Change 4(1):27–35. doi:10.1038/nclimate2056

    Article  Google Scholar 

  • Magalhães DR, Bruns E, Vasconcellos PC (2007) Polycyclic aromatic hydrocarbons as sugarcane burning tracers: a statistical approach. Quim Nova 30(3):577–581

    Article  Google Scholar 

  • Martinelli LA (2012) Ecosystem services and agricultural production in Latin America and Caribbean. Inter-American Development Bank, Washington

    Google Scholar 

  • Martinelli LA, Filoso S (2009) Balance between food production, biodiversity and ecosystem services in Brazil: a challenge and an opportunity. Biota Neotropica 9:21–25. doi:10.1590/S1676-06032009000400001

    Article  Google Scholar 

  • Martinelli LA, Naylor R, Vitousek PM, Moutinho P (2010) Agriculture in Brazil: impacts, costs, and opportunities for a sustainable future. Curr Opin Environ Sustain 2:431–438

    Article  Google Scholar 

  • Martins JA, Silva Dias MAF, Gonçalves FLT (2009) Impact of biomass burning aerosols on precipitation in the Amazon: a modeling case study. J Geophys Res 114:1–19

    Article  Google Scholar 

  • Mello FFC, Cerri CEP, Davies CA, Holbrook NM et al (2014) Payback time for soil carbon and sugar-cane ethanol. Nat Clim Change 4(7):605–609. doi:10.1038/nclimate2239

    Article  Google Scholar 

  • Mendonça RC, Felfili JM, Walter BMT, Silva Júnior MC et al (2008) Vascular flora of the Cerrado biome: checklist with 12,356 species. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: Ecology and Flora. Embrapa Cerrados/Embrapa Informação Tecnológica, Brasília, pp 421–1279

    Google Scholar 

  • Ministry of Environment (MMA) (2013) Área da Mata Atlântica é habitada por 70 % da população brasileira. http://www.mma.gov.br/informma/item/9818-%C3%A1rea-da-mata-atl%C3%A2ntica-%C3%A9-habitada-por-70-da-popula%C3%A7%C3%A3o-brasileira. Accessed 01 Oct 2014

  • Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J et al (2005) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, Washington

    Google Scholar 

  • Morellato LPC, Haddad CFB (2000) Introduction: the Brazilian Atlantic Forest introduction. Biotropica 32(4):786–792

    Article  Google Scholar 

  • Murray-Smith C, Brummitt NA, Oliveira-Filho AT, Bachman S et al (2009) Plant diversity hotspots in the Atlantic coastal forests of Brazil. Conserv Biol 23(1):151–163. doi:10.1111/j.1523-1739.2008.01075.x

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  Google Scholar 

  • Neill C, Fry B, Melillo JM, Steudler PA et al (1996) Forest- and pasture-derived carbon contributions to carbon stocks and microbial respiration of tropical pasture soils. Oecologia 107:113–119

    Article  Google Scholar 

  • Nepstad D, Soares-Filho BS, Merry F, Lima A et al (2009) The end of deforestation in the Brazilian Amazon. Science 326:1350–1351

    Article  Google Scholar 

  • Nepstad D, McGrath D, Stickler C, Alencar A et al (2014) Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344:1118–1123. doi:10.1126/science.1248525

    Article  Google Scholar 

  • Oliveira-Filho AT, Fontes MAL (2000) Patterns of floristic differentiation among Atlantic Forests in southeastern Brazil and the influence of climate. Biotropica 32:793–810

    Article  Google Scholar 

  • Ometto JPHB, Nobre AD, Rocha HR, Artaxo P et al (2005) Amazonia and the modern carbon cycle: lessons learned. Oecologia 143:483–500. doi:10.1007/s00442-005-0034-3

    Article  Google Scholar 

  • Phalan B, Balmford A, Green RE, Scharlemann JPW (2011) Minimizing the harm to biodiversity of producing more food globally. Food Policy 36:S62–S71. doi:10.1016/j.foodpol.2010.11.008

    Article  Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc Lond [Biol] 365(1554):2959–2971. doi:10.1098/rstb.2010.0143

    Article  Google Scholar 

  • Prado GF, Zanetta DMT, Arbex MA, Braga AL et al (2012) Burnt sugarcane harvesting: particulate matter exposure and the effects on lung function, oxidative stress, and urinary 1-hydroxypyrene. Sci Total Environ 437:200–208

    Article  Google Scholar 

  • Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian Cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ et al (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142(6):1141–1153. doi:10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  • Riguera D, Andre PA, Zanetta DMT (2011) Sugar cane burning pollution and respiratory symptoms in schoolchildren in Monte Aprazivel, Southeastern Brazil. Rev Saude Publica 45(5):878–886

    Article  Google Scholar 

  • Roberts GC, Andreae MO, Zhou J, Artaxo P (2001) Cloud condensation nuclei in the Amazon Basin: ‘marine’ conditions over a continent? Geophys Res Lett 28(14):2807–2810. doi:10.1029/2000GL012585

    Article  Google Scholar 

  • Rocha HR, Goulden ML, Miller SD, Menton MC et al (2004) Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia. Ecol Appl 14:22–32

    Article  Google Scholar 

  • Rosolem CA, Pace L, Crusciol CAC (2004) Nitrogen management in maize cover crop rotations. Plant Soil 264:261–271

    Article  Google Scholar 

  • Rudel TK, Schneider L, Uriarte M, Turner BL II et al (2009) Agricultural intensification and changes in cultivated areas, 1970–2005. Proc Natl Acad Sci U S A 106(49):20675–20680

    Article  Google Scholar 

  • Sacek V (2014) Drainage reversal of the Amazon River due to the coupling of surface and lithospheric processes. Earth Planet Sci Lett 401:301–312. doi:10.1016/j.epsl.2014.06.022

  • Sano EE, Rosa R, Brito JLS, Ferreira LG (2010) Land cover mapping of the tropical Savanna region in Brazil. Environ Monit Assess 166(1–4):113–131. doi:10.1007/s10661-009-0988-4

    Article  Google Scholar 

  • Santos JC, Coloma LA, Summers K, Caldwell JP et al (2009) Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biol 7(3):448–461. doi:10.1371/journal.pbio.1000056

    Article  Google Scholar 

  • Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic rainforest. Ann Bot 90(4):517–531. doi:10.1093/aob/mcf189

    Article  Google Scholar 

  • Schafer JS (2002) Observed reductions of total solar irradiance by biomass-burning aerosols in the Brazilian Amazon and Zambian Savanna. Geophys Res Lett 29(17):2–5. doi:10.1029/2001GL014309

    Article  Google Scholar 

  • Scherr SJ, McNeely JA (2008) Biodiversity conservation and agricultural sustainability: towards a new paradigm of ‘ecoagriculture’ landscapes. Philos Trans R Soc B 363(1491):477–494. doi:10.1098/rstb.2007.2165

    Article  Google Scholar 

  • Schiesari L, Grillitsch B (2011) Pesticides meet megadiversity in the expansion of biofuel crops. Front Ecol Environ 9(4):215–221. doi:10.1890/090139

    Article  Google Scholar 

  • Simon MF, Grether R, Queiroz LP, Skema C et al (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci U S A 106(48):20359–20364. doi:10.1073/pnas.0903410106

    Article  Google Scholar 

  • Sousa DMG, Vilela L, Lobato E, Soares WV (2001) Uso de gesso, calcário e adubos para pastagens no cerrado. EMBRAPA Cerrados, Circular Técnica, Planaltina

    Google Scholar 

  • Swinton SM, Lupi F, Robertson GP, Hamilton SK (2007) Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol Econ 64(2):245–252. doi:10.1016/j.ecolecon.2007.09.020

    Article  Google Scholar 

  • Tabarelli M, Mantovani W, Peres CA (1999) Effects of habitat fragmentation on plant guild structure in the Montane Atlantic Forest of Southeastern Brazil. Biol Conserv 91:119–127

    Article  Google Scholar 

  • Teixeira AMG, Soares-Filho BS, Freitas SR, Metzger JP (2009) Modeling landscape dynamics in an Atlantic Rainforest region: implications for conservation. Forest Ecol Manag 257(4):1219–1230. doi:10.1016/j.foreco.2008.10.011

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P et al (1997) The Influence of functional diversity and composition on ecosystem processes. Science 277(5330):1300–1302. doi:10.1126/science.277.5330.1300

    Article  Google Scholar 

  • Tominaga TT, Cássaro FAM, Bacchi OOS, Reichardt K et al (2002) Variability of soil water content and bulk density in a sugarcane field. Aust J Soil Res 40(4):604–614

    Article  Google Scholar 

  • Tsao C-C, Campbell JE, Mena-Carrasco M, Spak SN et al (2011) Increased estimates of air-pollution emissions from Brazilian sugar-cane ethanol. Nat Clim Change 2(1):53–57. doi:10.1038/nclimate1325

    Article  Google Scholar 

  • Vieira FCB, Bayer C, Zanatta JA, Mielniczuk J et al (2009) Building up organic matter in a subtropical Paleudult under legume cover-crop-based rotations. Soil Sci Soc Am J 73(5):1699–1706. doi:10.2136/sssaj2008.0241

    Article  Google Scholar 

  • Zanatta JA, Bayer C, Dieckow J, Vieira FCB et al (2007) Soil organic carbon accumulation and carbon costs related to tillage, cropping systems and nitrogen fertilization in a subtropical Acrisol. Soil Tillage Res 94(2):510–519. doi:10.1016/j.still.2006.10.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Antonio Martinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martinelli, L.A., Coletta, L.D., Lins, S.R.M., Mardegan, S.F., de Castro Victoria, D. (2016). Brazilian Agriculture and Its Sustainability. In: Steier, G., Patel, K. (eds) International Food Law and Policy. Springer, Cham. https://doi.org/10.1007/978-3-319-07542-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07542-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07541-9

  • Online ISBN: 978-3-319-07542-6

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics