Skip to main content

Abstract

Bacteroides thetaiotaomicron, a Gram-negative anaerobe and symbiotic commensal microbe, dominates the human intestinal tract; where it provides a range of beneficial metabolic tasks not encoded in the human genome. B. thetaiotaomicron uses various polysaccharides as its carbon and energy source, providing valuable monosaccharides for its host. Regarding dairy technology, the most important characteristic of B. thetaiotaomicron is its ability to degrade lactose.β-galactosidase from B. thetaiotaomicron belongs to thesubfamily GH-35. There is a lack of structural information about B. thetaiotaomicron β-galactosidase, including the active site and residues involved in lactose degradation. The aim of this research was to predict the residues of B. thetaiotaomicron β-galactosidase involved in substrate catalysis, to construct a model of its active site, and to predict residues involved in substrate binding.Amino acid sequences were retrieved from UNIPROT database. Sequence clustering and alignments were performed using UGENE 1.11.3.Docking studies were performed using Surflex-Dock. Our results indicate that proton donor and nucleophillic residues could be GLU182 and GLU123, respectively.These active residues of B. thetaiotaomicron β-galactosidase have not been reported previously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sonnenburg, J.L., Xu, J., Leip, D.D., Chen, C.H., Westover, B.P., Weatherford, J., Buhler, J.D., Gordon, J.I.: Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005)

    Article  Google Scholar 

  2. Gill, S.R., Pop, M., De Boy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., Nelson, K.E.: Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006)

    Article  Google Scholar 

  3. Henrissat, B., Bairoch, A.: Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316, 695–696 (1996)

    Google Scholar 

  4. Wexler, H.M.: Bacteroides: the good, the bad, and the nittygritty. Clin. Microbiol. Rev. 20, 593–621 (2007)

    Article  Google Scholar 

  5. Xu, J., Bjursell, M.K., Himrod, J., Deng, S., Carmichael, L., Chiang, H.C., Hooper, L.V., Gordon, J.I.: A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076 (2003)

    Article  Google Scholar 

  6. Jinhu, W., Xiang, S., Yi, Z., Yongjun, L., Chengbu, L.: QM/MM investigation on the catalytic mechanism of Bacteroides thetaiotaomicron α-glucosidase BtGH97a. Biochimica et Biophysica Acta 1824, 750–758 (2012)

    Article  Google Scholar 

  7. Marcia, M.C., Jenny, L.A., David, R.R.: Expression and purification of two Family GH31 α-glucosidases from Bacteroides thetaiotaomicron. Protein Expression and Purification 86, 135–141 (2012)

    Article  Google Scholar 

  8. Shipman, J.A., Cho, H.K., Siegel, H.A., Salyers, A.A.: Physiological Characterization of SusG, an Outer Membrane Protein Essential for Starch Utilization by Bacteroides thetaiotaomicron. Journal of Bacteriology 181, 7206–7211 (1999)

    Google Scholar 

  9. Wang, J., Shoemaker, N.B., Wang, G.R., Salyers, A.A.: Characterization of a Bacteroides Mobilizable Transposon, NBU2, Which Carries a Functional Lincomycin Resistance Gene. Journal of Bacteriology 182, 3559–3571 (2000)

    Article  Google Scholar 

  10. Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombart, V., Henrissat, B.: The carbohydrate active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009)

    Google Scholar 

  11. UniProt, http://www.uniprot.org

  12. Protein Data Bank, http://www.rcsb.org

  13. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov

  14. UniproUgene, http://ugene.unipro.ru/

  15. Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  Google Scholar 

  16. Halgren, A.T.: Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17, 490–519 (1996)

    Article  Google Scholar 

  17. Halgren, A.T.: Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J. Comput. Chem. 17, 520–552 (1996)

    Article  Google Scholar 

  18. Halgren, A.T.: Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem. 17, 553–586 (1996)

    Article  Google Scholar 

  19. Halgren, A.T., Nachbar, B.R.: Merck molecular force field. IV. Conformational energies and geometries for MMFF94. J. Comput. Chem. 17, 587–615 (1996)

    Google Scholar 

  20. Halgren, A.T.: Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules. J. Comput. Chem. 17, 616–641 (1996)

    Article  Google Scholar 

  21. Halgren, A.T.: MMFF: VI. MMFF94s option for energy minimization studies. J. Comput. Chem. 20, 720–729 (1999)

    Article  Google Scholar 

  22. Jain, A.N.: Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem. 46, 499–511 (2003)

    Article  Google Scholar 

  23. Maksimainen, M., Paavilainen, S., Hakulinen, N., Rouvinen, J.: Structural analysis, enzymatic characterization, and catalytic mechanisms of β-galactosidase from Bacillus circulansssp. alkalophilus. FEBS J. 279, 1788–1798 (2012)

    Article  Google Scholar 

  24. McCarter, J.D., Burgoyne, D.L., Miao, S., Zhang, S., Callahan, J.W., Withers, S.G.: Identification of Glu-268 as the Catalytic Nucleophile of Human Lysosomal b-Galactosidase Precursor by Mass Spectrometry. J. Biol. Chem. 272, 396–400 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Vukić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vukić, V., Hrnjez, D., Milanović, S., Iličić, M., Kanurić, K., Petri, E. (2014). Prediction of Active Residues of β-galactosidase from Bacteroides thetaiotaomicron . In: Saez-Rodriguez, J., Rocha, M., Fdez-Riverola, F., De Paz Santana, J. (eds) 8th International Conference on Practical Applications of Computational Biology & Bioinformatics (PACBB 2014). Advances in Intelligent Systems and Computing, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-319-07581-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07581-5_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07580-8

  • Online ISBN: 978-3-319-07581-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics