Skip to main content

PPML: Penalized Partial Least Squares Discriminant Analysis for Multi-Label Learning

  • Conference paper
Web-Age Information Management (WAIM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8485))

Included in the following conference series:

  • 5851 Accesses

Abstract

Multi-label learning has attracted widespread attention in machine learning, and many multi-label learning algorithms have been witnessed. However, two main challenging issues remain: the high dimension of data and the label correlation. In this paper, a new classification method, called penalized partial least squares discriminant analysis for multi-label learning (PPML), is proposed. It aims at performing dimension reduction and capturing the label correlations simultaneously. Specifically, PPML first identifies a latent space for the variable and label space via partial least squares discriminant analysis (PLS-DA). To tackle with the problem of high dimensionality in solving PLS-DA, a ridge penalization is exerted on the optimization problem. After that, the latent space is used to construct learning model. The experimental results on the standard public data sets indicate that PPML has better performance than the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barutcuoglu, Z., Schapire, R., Troyanskaya, O.: Hierarchical multi-label prediction of gene function. Bioinformatics 22(7), 830–836 (2006)

    Article  Google Scholar 

  2. Yang, S., Kim, S., Ro, Y.: Semantic home photo categorization. IEEE Transactions on Circuits and Systems for Video Technology 17, 324–335 (2007)

    Article  Google Scholar 

  3. Read, J.: Scalable multi-label classification, PhD thesis, University of Waikato, Hamilton, New Zealand (2010)

    Google Scholar 

  4. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn., Spring (2010)

    Google Scholar 

  5. Tsoumakas, G., Katakis, I., Vlahavas, I.: Randomk-Labelsets for Multi-Label Classification. IEEE Transactions on Knowledge and Data Engineering 23(7), 1079–1089 (2011)

    Article  Google Scholar 

  6. Zhang, M.-L., Zhou, Z.-H.: ML-kNN: a lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

  7. Zhang, M.-L., Zhou, Z.-H.: Multi-label Neural Network with Applications to Functional Genomics and Text Categorization. IEEE Transactions on Knowledge and Data Engineering 18(10), 1338–1351 (2006)

    Article  Google Scholar 

  8. Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  9. Jolliffe, I.: Principal Component Analysis. Springer, New York (1986)

    Book  Google Scholar 

  10. Fisher, R.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 179–188 (1936)

    Article  Google Scholar 

  11. Hotelling, H.: Relations between two sets of variables. Biometrika 28, 312–377 (1936)

    Article  Google Scholar 

  12. Huang, S.-J., Zhou, Z.-H.: Multi-label learning by exploiting label correlations locally. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012), Toronto, Canada, pp. 949–955. AAAI Press (2012)

    Google Scholar 

  13. Xu, M., Li, Y.-F., Zhou, Z.-H.: Multi-Label Learning with PRO Loss. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI 2013), Bellevue, WA (2013)

    Google Scholar 

  14. Sun, L., Ji, S.-W., Ye, J.-P.: Canonical Correlation Analysis for Multilabel Classification: A Least-Squares Formulation. Extensions, and Analysis, Pattern Analysis and IEEE Transactions on Machine Intelligence 33(1), 194 (2011)

    Article  Google Scholar 

  15. Qian, B., Davidson, I.: Semi-supervised dimension reduction for multi-label classification. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  16. Zhang, M.-L., Zhang, K.: Multi-label learning by exploiting label dependency. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2010), Washington, D.C., pp. 999–1007 (2010)

    Google Scholar 

  17. Wold, H.: Path Models with Latent Variables: The NIPALS Approach. In: Blalock, H.M., Aganbegian, A., Borodkin, F.M., Boudon, R., Capecchi, V. (eds.) Quantitative Sociology: International Perspectives on Mathematical and Statistical Modeling, pp. 307–357. Academic Press, New York (1975)

    Chapter  Google Scholar 

  18. Hoerl, A., Kennard, R.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  19. Frnkranz, J., Hllermeier, E., Menca, E.L., Brinker, K.: Multilabel classification via calibrated label ranking. Machine Learning 23(2), 133–153 (2008)

    Article  Google Scholar 

  20. Tsoumakas, G., Dimou, A., Spyromitros, E., Mezaris, V., Kompatsiaris, I., Vlahavas, I.: Correlation-based pruning of stacked binary relevance models for multi-label learning. In: Proceedings of the Workshop on Learning from Multi-Label Data (MLD 2009), pp. 101–116 (2009)

    Google Scholar 

  21. Zhang, M.-L., Zhou, Z.-H.: A review on multi-label learning algorithms. In: IEEE Transactions on Knowledge and Data Engineering (2013) doI:10.1109/TKDE.2013.39

    Google Scholar 

  22. Read, J.: A pruned problem transformation method for multi-label classification. In: Proc. 2008 New Zealand Computer Science Research Student Conference (NZCSRS 2008), pp. 143–150 (2008)

    Google Scholar 

  23. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: ECML/PKDD 2009, pp. 254–269 (2009)

    Google Scholar 

  24. Clare, A.J., King, R.D.: Knowledge Discovery in Multi-label Phenotype Data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Dietterich, G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, pp. 681–687. MIT Press, Cambridge (2002)

    Google Scholar 

  26. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research 11(1), 19–60 (2010)

    MATH  MathSciNet  Google Scholar 

  27. Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal methods for sparse hierarchical dictionary learning. In: Proceedings of the International Conference on Machine Learning, ICML (2010)

    Google Scholar 

  28. Sampson, P., Streissguth, A., Barr, H., Bookstein, F.: eurobehavioral effects of prenatal alcohol: Part II. Partial Least Squares Analysis, Neurotoxicology and Teratology 11(5), 477–491 (1989)

    Article  Google Scholar 

  29. De Jong, S.: SIMPLS: an alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems 18(3), 251–263 (1993)

    Article  MathSciNet  Google Scholar 

  30. Spyromitros, E., Tsoumakas, G., Vlahavas, I.P.: An Empirical Study of Lazy Multilabel Classification Algorithms. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos, A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 401–406. Springer, Heidelberg (2008)

    Google Scholar 

  31. Cheng, W., H\(\ddot{u}\)llermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Machine Learning 76(2-3), 211–225 (2009)

    Google Scholar 

  32. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: A Java Library for Multi-Label Learning. Journal of Machine Learning Research 12, 2411–2414 (2011)

    MATH  MathSciNet  Google Scholar 

  33. Huang, S.-J., Yu, Y., Zhou, Z.-H.: Multi-label hypothesis reuse. In: Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Beijing, China, pp. 525–533 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ma, Z., Liu, H., Su, K., Zheng, Z. (2014). PPML: Penalized Partial Least Squares Discriminant Analysis for Multi-Label Learning. In: Li, F., Li, G., Hwang, Sw., Yao, B., Zhang, Z. (eds) Web-Age Information Management. WAIM 2014. Lecture Notes in Computer Science, vol 8485. Springer, Cham. https://doi.org/10.1007/978-3-319-08010-9_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08010-9_69

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08009-3

  • Online ISBN: 978-3-319-08010-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics