Skip to main content

Multi-label Ferns for Efficient Recognition of Musical Instruments in Recordings

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8502))

Included in the following conference series:

Abstract

In this paper we introduce multi-label ferns, and apply this technique for automatic classification of musical instruments in audio recordings. We compare the performance of our proposed method to a set of binary random ferns, using jazz recordings as input data. Our main result is obtaining much faster classification and higher F-score. We also achieve substantial reduction of the model size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosch, J.J., Janer, J., Fuhrmann, F., Herrera, P.: A Comparison of Sound Segregation Techniques for Predominant Instrument Recognition in Musical Audio Signals. In: 13th International Society for Music Information Retrieval Conference (ISMIR), pp. 559–564 (2012)

    Google Scholar 

  2. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Cont, A., Dubnov, S., Wessel, D.: Realtime multiple-pitch and multiple-instrument recognition for music signals using sparse non-negativity constraints. In: Proc. 10th Int. Conf. Digital Audio Effects (DAFx-2007), pp. 85–92 (2007)

    Google Scholar 

  4. Eggink, J., Brown, G.J.: Application of missing feature theory to the recognition of musical instruments in polyphonic audio. In: 4th International Society for Music Information Retrieval Conference, ISMIR (2003)

    Google Scholar 

  5. Essid, S., Richard, G., David, B.: Instrument recognition in polyphonic music based on automatic taxonomies. IEEE Trans. Audio, Speech, Lang. Process. 14(1), 68–80 (2006)

    Article  Google Scholar 

  6. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC Music Database: Music Genre Database and Musical Instrument Sound Database. In: 4th International Society for Music Information Retrieval Conference (ISMIR), pp. 229–230 (2003)

    Google Scholar 

  7. Heittola, T., Klapuri, A., Virtanen, A.: Musical Instrument Recognition in Polyphonic Audio Using Source-Filter Model for Sound Separation. In: 10th International Society for Music Information Retrieval Conference, ISMIR (2009)

    Google Scholar 

  8. Herrera-Boyer, P., Klapuri, A., Davy, M.: Automatic Classification of Pitched Musical Instrument Sounds. In: Klapuri, A., Davy, M. (eds.) Signal Processing Methods for Music Transcription. Springer (2006)

    Google Scholar 

  9. ISO: MPEG-7 Overview, http://www.chiariglione.org/mpeg/

  10. Jiang, W., Wieczorkowska, A., Raś, Z.W.: Music Instrument Estimation in Polyphonic Sound Based on Short-Term Spectrum Match. In: Hassanien, A.-E., Abraham, A., Herrera, F. (eds.) Foundations of Computational Intelligence Volume 2. SCI, vol. 202, pp. 259–273. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Kashino, K., Murase, H.: A sound source identification system for ensemble music based on template adaptation and music stream extraction. Speech Commun. 27, 337–349 (1999)

    Article  Google Scholar 

  12. Kitahara, T., Goto, M., Komatani, K., Ogata, T., Okuno, H.G.: Instrument identification in polyphonic music: Feature weighting to minimize influence of sound overlaps. EURASIP J. Appl. Signal Process. 2007, 1–15 (2007)

    Article  Google Scholar 

  13. Kubera, E.z., Kursa, M.B., Rudnicki, W.R., Rudnicki, R., Wieczorkowska, A.A.: All That Jazz in the Random Forest. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 543–553. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Kursa, M.B.: Random ferns method implementation for the general-purpose machine learning (2012), http://arxiv.org/abs/1202.1121v1 (submitted)

  15. Kursa, M.B.: Robustness of Random Forest-based gene selection methods. BMC Bioinformatics 15(8(1)), 1–8 (2014)

    Google Scholar 

  16. Little, D., Pardo, B.: Learning Musical Instruments from Mixtures of Audio with Weak Labels. In: 9th International Society for Music Information Retrieval Conference, ISMIR (2008)

    Google Scholar 

  17. Martins, L.G., Burred, J.J., Tzanetakis, G., Lagrange, M.: Polyphonic instrument recognition using spectral clustering. In: 8th International Society for Music Information Retrieval Conference, ISMIR (2007)

    Google Scholar 

  18. MIDOMI: Search for Music Using Your Voice by Singing or Humming, http://www.midomi.com/

  19. Niewiadomy, D., Pelikant, A.: Implementation of MFCC vector generation in classification context. J. Applied Computer Science 16(2), 55–65 (2008)

    Google Scholar 

  20. Opolko, F., Wapnick, J.: MUMS — McGill University Master Samples. CD’s (1987)

    Google Scholar 

  21. Özuysal, M., Fua, P., Lepetit, V.: Fast Keypoint Recognition in Ten Lines of Code. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE (2007)

    Google Scholar 

  22. Özuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast Keypoint Recognition using Random Ferns. Image Processing (2008)

    Google Scholar 

  23. Ras, Z.W., Wieczorkowska, A.A. (eds.): Advances in Music Information Retrieval. SCI, vol. 274. Springer, Heidelberg (2010)

    Google Scholar 

  24. Rudnicki, R.: Jazz band. Recording and mixing. Arrangements by M. Postle. Clarinet — J. Murgatroyd, trumpet — M. Postle, harmonica, trombone — N. Noutch, sousaphone – J. M. Lancaster (2010)

    Google Scholar 

  25. Shazam Entertainment Ltd, http://www.shazam.com/

  26. Shen, J., Shepherd, J., Cui, B., Liu, L. (eds.): Intelligent Music Information Systems: Tools and Methodologies. Information Science Reference, Hershey (2008)

    Google Scholar 

  27. The University of IOWA Electronic Music Studios: Musical Instrument Samples, http://theremin.music.uiowa.edu/MIS.html

  28. TrackID, https://play.google.com/store/apps/details?id=com.sonyericsson.trackid

  29. Vincent, E., Rodet, X.: Music transcription with ISA and HMM. In: 5th International Conference on Independent Component Analysis and Blind Signal Separation (ICA), pp. 1197–1204 (2004)

    Google Scholar 

  30. Wieczorkowska, A.A., Kursa, M.B.: A Comparison of Random Forests and Ferns on Recognition of Instruments in Jazz Recordings. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.) ISMIS 2012. LNCS (LNAI), vol. 7661, pp. 208–217. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  31. Barbedo, J.G.A., Tzanetakis, G.: Musical Instrument Classification Using Individual Partials. IEEE Transactions on Audio, Speech & Language Processing 19(1), 111–122 (2011)

    Article  Google Scholar 

  32. Kirchhoff, H., Dixon, S., Klapuri, A.: Multi-Template Shift-Variant Non-Negative Matrix Deconvolution for Semi-Automatic Music Transcription. In: 13th International Society for Music Information Retrieval Conference (ISMIR), pp. 415–420 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kursa, M.B., Wieczorkowska, A.A. (2014). Multi-label Ferns for Efficient Recognition of Musical Instruments in Recordings. In: Andreasen, T., Christiansen, H., Cubero, JC., RaÅ›, Z.W. (eds) Foundations of Intelligent Systems. ISMIS 2014. Lecture Notes in Computer Science(), vol 8502. Springer, Cham. https://doi.org/10.1007/978-3-319-08326-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08326-1_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08325-4

  • Online ISBN: 978-3-319-08326-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics