Skip to main content

Flexary Operators for Formalized Mathematics

  • Conference paper
Intelligent Computer Mathematics (CICM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8543))

Included in the following conference series:

Abstract

We study representation formats that allow formally defining what we call flexary operators: functions that take arbitrarily many arguments, like \(\sum_{k=1}^n a_k\) or binders that bind arbitrarily many variables, like ∀ x1,…x n . F. Concretely, we define a flexary logical framework based on LF, and use it as a meta-language to define flexary first-order logic and flexary simple type theory. We use these to formalize several flexary mathematical concepts including arithmetical and logical operators, matrices, and polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausbrooks, R., Buswell, S., Carlisle, D., Dalmas, S., Devitt, S., Diaz, A., Froumentin, M., Hunter, R., Ion, P., Kohlhase, M., Miner, R., Poppelier, N., Smith, B., Soiffer, N., Sutor, R., Watt, S.: Mathematical Markup Language (MathML) Version 2.0, 2nd edn. (2003), http://www.w3.org/TR/MathML2

  2. Coquand, T., Huet, G.: The Calculus of Constructions. Information and Computation 76(2/3), 95–120 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Information technology — Common Logic (CL): a framework for a family of logic-based languages. Technical Report 24707:2007, ISO/IEC (2007)

    Google Scholar 

  4. The Coq Development Team. The Coq Proof Assistant: Reference Manual. Technical report, INRIA (2014)

    Google Scholar 

  5. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal of the Association for Computing Machinery 40(1), 143–184 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Horozal, F., Kohlhase, M., Rabe, F.: Extending OpenMath with Sequences. In: Asperti, A., Davenport, J., Farmer, W., Rabe, F., Urban, J. (eds.) Intelligent Computer Mathematics, Work-in-Progress Proceedings, pp. 58–72. University of Bologna (2011)

    Google Scholar 

  7. Kutsia, T., Buchberger, B.: Predicate logic with sequence variables and sequence function symbols. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS (LNAI), vol. 3119, pp. 205–219. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Korniłowicz, A.: Tentative experiments with ellipsis in Mizar. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P., Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS (LNAI), vol. 7362, pp. 453–457. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Martin-Löf, P.: An Intuitionistic Theory of Types: Predicative Part. In: Proceedings of the 1973 Logic Colloquium, pp. 73–118. North-Holland (1974)

    Google Scholar 

  10. Norell, U.: The Agda WiKi (2005), http://wiki.portal.chalmers.se/agda

  11. Paulson, L.C.: Isabelle: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)

    Google Scholar 

  12. Pfenning, F.: Logical frameworks. In: Handbook of Automated Reasoning, pp. 1063–1147. Elsevier (2001)

    Google Scholar 

  13. Pfenning, F., Schürmann, C.: System description: Twelf - A meta-logical framework for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Rabe, F.: The MMT API: A Generic MKM System. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS (LNAI), vol. 7961, pp. 339–343. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Rabe, F., Kohlhase, M.: A Scalable Module System. Information and Computation 230(1), 1–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sexton, A., Sorge, V.: Processing textbook-style matrices. In: Kohlhase, M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 111–125. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Wolfram Research, Inc. Mathematica 9.0 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Horozal, F., Rabe, F., Kohlhase, M. (2014). Flexary Operators for Formalized Mathematics. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds) Intelligent Computer Mathematics. CICM 2014. Lecture Notes in Computer Science(), vol 8543. Springer, Cham. https://doi.org/10.1007/978-3-319-08434-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08434-3_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08433-6

  • Online ISBN: 978-3-319-08434-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics