Skip to main content

Complex Networks of Harmonic Structure in Classical Music

  • Conference paper
Nonlinear Dynamics of Electronic Systems (NDES 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 438))

Included in the following conference series:

Abstract

Music is a ubiquitous, complex and defining phenomenon of human culture. We create and analyze complex networks representing harmonic transitions in eight selected compositions of Johann Sebastian Bach’s Well-Tempered Clavier. While all resulting networks exhibit the typical ‘small-world’-characteristics, they clearly differ in their degree distributions. Some of the degree distributions are well fit by a power-law, others by an exponential, and some by neither. This seems to preclude the necessity of a scale-free degree distribution for music to be appealing. To obtain a quality measure for the network representation, we design a simple algorithm that generates artificial polyphonic music, which also exhibits the different styles of composition underlying the various pieces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  2. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  4. Liu, X.F., Tse, C.K., Small, M.: Complex network structure of musical compositions: Algorithmic generation of appealing music. Physica A 389, 126–132 (2010)

    Article  Google Scholar 

  5. Serrà, J., Corral, A., Boguñá, M., Haro, M., Arcos, J.L.: Measuring the Evolution of Contemporary Western Popular Music. Sci. Rep. 2, 00521 (2012)

    Google Scholar 

  6. Liu, L., Wei, J., Zhang, H., Xin, J., Huang, J.: A Statistical Physics View of Pitch Fluctuations in the Classical Music from Bach to Chopin: Evidence for Scaling. PLoS ONE 8, e58710 (2013)

    Google Scholar 

  7. Zivic, P.H.R., Shifres, F., Cecchi, G.A.: Perceptual basis of evolving Western musical styles. Proc. Natl. Acad. Sci. U.S.A. 110, 10034–10038 (2013)

    Article  Google Scholar 

  8. Nettheim, N.: On the Spectral Analysis of Melody. Interface 21, 135–148 (1992)

    Article  Google Scholar 

  9. Boon, J.P., Decroly, O.: Dynamical Systems theory for music dynamics. Chaos 5, 501–508 (1995)

    Article  Google Scholar 

  10. Voss, R.F., Clarke, C.: “1/f noise” in music: Music from 1/f noise. J. Acoust. Soc. Am. 63, 258–263 (1978)

    Article  Google Scholar 

  11. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)

    Article  MathSciNet  Google Scholar 

  12. Jennings, H.D., Ivanov, P.C., Martins, A.M., da Silva, P.C., Viswanathan, G.M.: Variance fluctuations in nonstationary time series: A comparative study of music genres. Physica A 336, 585–594 (2004)

    Article  Google Scholar 

  13. Boon, J.P., Noullez, A., Mommen, C.: Complex Dynamics and Musical Structure. Interface 19, 3–14 (1990)

    Article  Google Scholar 

  14. Zanette, D.H.: Zipf’s law and the creation of musical context. Music Sci. 10, 3–18 (2006)

    Google Scholar 

  15. Beltrán del Río, M., Cocho, G., Naumis, G.G.: Universality in the tail of musical note rank distribution. Physica A 387, 5552–5560 (2008)

    Article  Google Scholar 

  16. Lerdahl, F.: Tonal Pitch Space. Oxford University Press (2001)

    Google Scholar 

  17. Tymoczko, D.: The Geometry of Musical Chords. Science 313, 72–74 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law Distributions in Empirical Data. SIAM Rev. 51, 661–703 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Deluca, A., Corral, Á.: Fitting and goodness-of-fit test of non-truncated and truncated power-law distributions. Acta Geophys. 61, 1351–1394 (2013)

    Article  Google Scholar 

  20. Artificially generated music is available on http://stoop.ini.uzh.ch/artmus

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gomez, F., Lorimer, T., Stoop, R. (2014). Complex Networks of Harmonic Structure in Classical Music. In: Mladenov, V.M., Ivanov, P.C. (eds) Nonlinear Dynamics of Electronic Systems. NDES 2014. Communications in Computer and Information Science, vol 438. Springer, Cham. https://doi.org/10.1007/978-3-319-08672-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08672-9_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08671-2

  • Online ISBN: 978-3-319-08672-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics