Skip to main content

Recent Advances and Future Directions of Research

  • Chapter
  • First Online:
Current Conveyors

Abstract

Some recent advances made in the methods of systematic synthesis of circuits using CCs, hardware implementation of CCs, development of field programmable analog arrays using CCs and the applications of CCs in digital logic circuits have been pointed out and future directions of research on Current Conveyors have been indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awad IA, Soliman AM (2002) On the voltage mirrors and the current mirrors. Analog Integr Circ Sig Process 32:79–81

    Article  Google Scholar 

  2. Wang HY, Chang SH, Chiang NH, Nguyen QM (2014) Symbolic analysis using floating pathological elements. Adv Intell Syst Comput 238:379–387

    Article  Google Scholar 

  3. Haigh DG, Tan FQ, Papavassiliou C (2005) Systematic synthesis of active-RC circuit building-blocks. Analog Integr Circ Sig Process 43:297–315

    Article  Google Scholar 

  4. Wang HY, Chang SH, Jeang YL, Huang CY (2006) Rearrangement of mirror elements. Analog Integr Circ Sig Process 49:87–90

    Article  Google Scholar 

  5. Wang HY, Liu CY, Chang SH (2010) New nullor-mirror equivalences. Int J Electron Commun (AEU) 64:828–832

    Article  Google Scholar 

  6. Soliman AM (2010) Generation of CCII and ICCII based Wien oscillators using nodal admittance matrix expansion. Int J Electron Commun (AEU) 64:971–977

    Article  Google Scholar 

  7. Soliman AM (2011) Pathological realizations of the DCVC (CDBA) and applications to oscillators and filters. Int J Electron Commun (AEU) 65:985–992

    Article  Google Scholar 

  8. Soliman AM (2011) Generation and classification of CCII and ICCII based negative impedance converter circuits using NAM expansion. Int J Circ Theor Appl 39:835–847

    Google Scholar 

  9. Soliman AM (2012) A note on the generation of generalized impedance converter circuits using NAM expansion. Circ Syst Sig Process 31:1147–1157

    Article  Google Scholar 

  10. Soliman AM (2012) Three -port gyrator circuits using transconductance amplifier or generalized conveyors. Int J Electron Commun (AEU) 66:286–293

    Article  Google Scholar 

  11. Huang WC, Wang HY, Cheng PS, Lin YC (2012) Nullor equivalents of active devices for symbolic circuit analysis. Circ Syst Sig Process 31:865–875

    Article  MathSciNet  MATH  Google Scholar 

  12. Soliman AM (2012) Classification and pathological realizations of transconductance amplifiers. J Circ Syst Comput 21:17. doi:10.1142/S0218126612500107

    Google Scholar 

  13. Soliman AM (2012) Pathological realizations of BOTA and FDDTA using grounded resistors. J Circ Syst Comput 21:23. doi:10.1142/S0218126612500259

    Google Scholar 

  14. Soliman AM (2013) Generation of third-order quadrature oscillator circuits using NAM expansion. J Circ Syst Comput 22:13. doi:10.1142/S0218126613500606

    Google Scholar 

  15. Lin WC, Wang HY, Liu CY, Lee TF (2013) Symbolic analysis of active device containing differencing voltage or current characteristics. Microelectron J 44:354–358

    Article  Google Scholar 

  16. Sanchez-Lopez C, Ruiz-Pastor A, Ochoa-Montiel O, Carrasco-Aguilar MA (2013) Symbolic nodal analysis of analog circuits with modern multiport functional blocks. Radioengineering 22:518–525

    Google Scholar 

  17. Soliman AM (2011) Synthesis of oscillators using limit variables and NAM expansion. Active Passiv Electron Comp 2011:13. doi:10.1155/2011/131546

    Article  Google Scholar 

  18. Merz N, Kiranon W, Wongtachathum C, Pawarangkoon NW (2012) A modified bipolar translinear cell with improved linear range and its applications. Radioengineering 21:736–745

    Google Scholar 

  19. Psychalinos C, Souliotis G (2010) Low-voltage current controlled current conveyor. Analog Integr Circ Sig Process 64:129–135

    Article  Google Scholar 

  20. Khateb F, Khatib N, Kubanek D (2012) Novel ultra-low power class AB CCII + based on floating gate folded cascode OTA. Circ Syst Sig Process 31:447–464

    Article  MathSciNet  Google Scholar 

  21. Khateb F, Khatib N, Kubanek D (2012) Low-voltage ultra- low current conveyor based on Quasi-floating gate transistors. Radioengineering 21:725–735F

    Google Scholar 

  22. Fani R, Farshidi E (2013) A FG-MOS based fully differential current controlled conveyor and its applications. Circ Syst Sig Process 32:993–1011

    Article  Google Scholar 

  23. Chatterjee A, Fakhfakh M, Siarry P (2010) Design of second-generation current conveyors employing bacterial foraging optimization. Microelectron J 41:616–626

    Article  Google Scholar 

  24. Premont C, Grisel R, Abouchi N, Chante JP (1998) A current conveyor based field programmable analog array. Analog Integr Circ Sig Process 17:105–124

    Article  Google Scholar 

  25. Mahmoud SA, Soliman EA (2011) Low voltage current conveyor-based field programmable analog array. J Circ Syst Comput 20:1677–1701

    Article  Google Scholar 

  26. Mahmoud S, Soliman E (2013) Novel CCII-based filed programmable analog array and its application to a sixth-order Butterworth LPF. Radioengineering 22:440–447

    Google Scholar 

  27. Yasin MY (2013) A novel bipolar XOR/XNOR realization using translinear type 2nd generation current controlled current conveyor designed in 45nm CMOS technology. ACTA Electrotehnica 54:3–6

    Google Scholar 

  28. Tekin SA (2014) Voltage summing current conveyor (VSCC) for oscillator and summing amplifier applications. J Microelectron Electron Compon Mater 44:159–167

    Google Scholar 

  29. Sotner R, Herencsar N, Jerabek J, Prokop R, Kartci A, Dostal T, Vrva K (2014) Z-copy controlled-gain voltage differencing current conveyor: advanced possibilities in direct electronic control of first-order filtek. Elektronika IR Elektrotechnika 20:77–83

    Article  Google Scholar 

  30. Andreou AG (1999) Exploiting device physics in circuit design for efficient computational functions in analog VLSI: book chapter 4 in Low- voltage/low-power integrated circuits and systems IEEE Press, Edgar Sanchez, Wiley-IEEE Press, pp 85–132

    Google Scholar 

  31. Ananda Mohan PV (2000) Comments on A transformation of obtaining CCII-based adjoint of Op-Amp-based circuits. IEEE Trans Circ Syst-II 47:233

    Article  Google Scholar 

  32. Aronhime P, Wang K, Qian T (2001) Generalization of theorem for replacing CCIIs by CFOAs in current-mode circuits. Analog Integr Circ Sig Process 28:27–33

    Article  Google Scholar 

  33. Sato T, Wada K, Takagi S, Fujii N (2002) Extension of current conveyor concept and its applications. IEICE Trans Fundam E85-A:414–421

    Google Scholar 

  34. Centurelli F, Diqual M, Ferri G, Guerrini NC, Scotti G, Trifiletti A (2005) A novel dual-output CCII based single-ended to differential converter. Analog Integr Circ Sig Process 43:87–90

    Article  Google Scholar 

  35. Gianni C, Pennisi S, Scotti G, Trifiletti A (2007) The universal circuit simulator: a mixed signal approach to n-port network and impedance synthesis. IEEE Trans Circ Syst-I 54:2178–2183

    Article  MathSciNet  Google Scholar 

  36. Godara B, Fabre A (2008) A new application of current conveyors: the design of wideband controllable low-noise amplifiers. Radioengineering 17:91–100

    Google Scholar 

  37. Cuautle ET, Frias DM, Lopez CS, Villasenor MAD (2008) Synthesis of CCII-s by superimposing VFs and CFs through genetic operations. IEICE Electron Express 5:411–415

    Article  Google Scholar 

  38. Raikos G, Vlassis S, Psychalinos C (2012) 0.5 V bulk-driven analog building blocks. Int J Electron Commun (AEU) 66:920–927

    Article  Google Scholar 

  39. Horng JW (2012) Analytical synthesis of general high-order voltage/current transfer functions using CCIIs. Microelectron J 43:546–554

    Article  Google Scholar 

  40. Metin B, Pal K, Cicekoglu O (2012) A new approach for high-input impedance in voltage mode filters using first-generation current conveyor in place of second-generation current conveyor. Int J Electron 99:131–139

    Article  Google Scholar 

  41. Khateb F, Jaikla W, Kumngern M, Prommee P (2013) Comparative study of sub-volt differential difference current conveyor. Microelectron J 44:1278–1284

    Article  Google Scholar 

  42. Mahmoud SA, Soliman EA (2013) Multi-standard receiver baseband chain using digitally programmable OTA based on CCII and current division networks. J Circ Syst Comput 22:20. doi:10.1142/S0218126613500199

    Article  Google Scholar 

  43. Fakhfakh M, Pierzchala M (2013) Synthesis of active inductors using SFG stamps. Microelectronics J 44:1107–1122

    Article  Google Scholar 

  44. Ercan H, Alci M (2013) A new design for a BI-CMOS controlled current conveyor. Elecktronika IR Elektrotechnika 19:56–60

    Google Scholar 

  45. Khateb F, Kumngern M, Spyridon V, Psychalinos C (2014) Differential difference current conveyor using Bulk-driven technique for ultra-low-voltage applications. Circ Syst Sig Process 33:159–176

    Article  Google Scholar 

  46. Pushkar KL, Bhaskar DR, Prasad D (2014) Voltage-mode new universal biquad filter configuration using a single VDIBA. Circ Syst Sig Process 33:275–285

    Article  Google Scholar 

  47. Thankachan S, Pattanaik M, Rajput SS (2008) A ±0.5V BiCMOS class-A current conveyor. World Acad Sci Eng Tech 2:473–476

    Google Scholar 

  48. Abbas Z, Olivieri M, Yakupov M, Ripp A (2013) Design centering/yield optimization of power aware band pass filter based on CMOS current conveyor (CCCII+). Microelectron J 44:321–331

    Article  Google Scholar 

  49. Seguin F, Godara B, Alicalapa F, Fabre A (2004) A gain-controllable wide-band low-noise amplifier in low-cost 0.8μm Si BiCMOS technology. IEEE Trans Microw Tech 52:154–160

    Article  Google Scholar 

  50. Erdal C, Kuntman H, Kafali S (2004) A current controlled conveyor based proportional- integral-derivative (PID) controller. J Electr Electron Eng 4:1243–1248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K. (2015). Recent Advances and Future Directions of Research. In: Current Conveyors. Springer, Cham. https://doi.org/10.1007/978-3-319-08684-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08684-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08683-5

  • Online ISBN: 978-3-319-08684-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics