Skip to main content

First, Second and Higher Order Filter Design Using Current Conveyors

  • Chapter
  • First Online:
Current Conveyors

Abstract

A number of first order, second-order and higher-order active filter configurations, chosen from the vast literature available on this topic, using classical types of CCI and/or CCII, have been discussed and their salient features have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this is nothing but the so-called ‘Inverting Current Conveyor’ (ICCII) as later re-introduced by Awad and Soliman; see Sect. 10.2.9 of Chap. 10.

References

  1. Higashimura M, Fukui Y (1988) Realization of all-pass networks using a current conveyor. Int J Electron 65:249–250

    Google Scholar 

  2. Higashimura M, Fukui Y (1990) Realization of current mode all-pass networks using a current conveyor. IEEE Trans Circ Syst 37:660–661

    Google Scholar 

  3. Cicekoglu O, Kuntman H, Berk S (1999) All-pass filters using a single current conveyor. Int J Electron 86:947–955

    Google Scholar 

  4. Khan IA, Maheshwari S (2000) Simple first order all-pass section using a single CCII. Int J Electron 87:303–306

    Google Scholar 

  5. Chong CP, Smith KC (1986) Biquadratic filter sections employing a single current conveyor. Electron Lett 22:1162–1164

    Google Scholar 

  6. Metin B, Yuce E, Cicekoglu O (2007) A novel dual output universal filter topology using a single current conveyor. Electr Eng 89:563–567

    Google Scholar 

  7. Toumazou C, Lidgey FJ (1986) Universal active filter using current conveyors. Electron Lett 22:662–664

    Google Scholar 

  8. Higashimura M, Fukui Y (1996) Universal filter using plus-type CCIIs. Electron Lett 32:810–811

    Google Scholar 

  9. Senani R, Singh VK (1995) KHN equivalent biquad using current conveyors. Electron Lett 31:626–628

    Google Scholar 

  10. Horng JW, Hou CL, Chang CM, Chou HP, Lin CT (2006) High input impedance voltage mode universal biquadratic filter with one input and five outputs using current conveyors. Circ Syst Sig Process 25:767–777

    MATH  MathSciNet  Google Scholar 

  11. Chen HP (2010) Single CCII-based voltage mode universal filter. Analog Integr Circ Sig Process 62:259–262

    Google Scholar 

  12. Horng JW (2004) Voltage-mode universal biquadratic filters using CCIIs. IEICE Trans Fundament 87:406–409

    Google Scholar 

  13. Chang CM, Tu SH (1999) Universal voltage-mode filter with four inputs and one output using two CCII+ s. Int J Electron 86:305–309

    Google Scholar 

  14. Liu SI, Lee JL (1997) Voltage mode universal filters using two current conveyors. Int J Electron 82:145–149

    Google Scholar 

  15. Horng JW, Lee MH, Cheng HC, Chang CW (1997) New CCII based voltage mode universal biquadratic filter. Int J Electron 82:151–155

    Google Scholar 

  16. Horng JW, Tsai CC, Lee MH (1996) Novel universal voltage mode biquad filter with three inputs and one output using only two current conveyors. Int J Electron 80:543–546

    Google Scholar 

  17. Chang CM (1997) Multifunction biquadratic filters using current conveyors. IEEE Trans Circ Syst-II 44:956–958

    Google Scholar 

  18. Ozoguz S, Gunes EO (1996) Universal filter with three input using CCII+. Electron Lett 32:2134–2135

    Google Scholar 

  19. Chang C, Lee MS (1994) Universal voltage mode filter with three inputs and one output using three current conveyors and one voltage follower. Electron Lett 30:2112–2113

    MathSciNet  Google Scholar 

  20. Chang CM, Lee MS (1995) Comment: universal voltage mode filter with three inputs and one output using three current conveyors and one voltage follower. Electron Lett 31:353

    Google Scholar 

  21. Horng JW (2004) High input impedance voltage mode universal biquadratic filters with three input using plus-type CCIIs. Int J Electron 91:465–475

    Google Scholar 

  22. Ozoguz S, Acar C (1997) Universal current-mode filter with reduced number of active and passive components. Electron Lett 33:948–949

    Google Scholar 

  23. Abuelma’atti MT, Shabra AM (1996) A novel current conveyor-based universal current-mode filter. Microelectron J 27:471–475

    Google Scholar 

  24. Senani R (1996) A simple approach of deriving single input multiple output current mode biquad filters. Frequenz 50:124–127

    Google Scholar 

  25. Senani R (1992) New current-mode biquad filter. Int J Electron 73:735–742

    Google Scholar 

  26. Chang CM (1993) Universal active current filter with single input and three outputs using CCIIs. Electron Lett 29:1932–1933

    Google Scholar 

  27. Chang CM (1993) Novel universal current-mode filter with single input and three outputs using only five current conveyors. Electron Lett 29:2005–2007

    Google Scholar 

  28. Sun Y, Fidler JK (1994) Versatile active biquad based on second generation current conveyors. Int J Electron 76:91–98

    Google Scholar 

  29. Senani R (1985) Novel higher order active filter design using current conveyors. Electron Lett 21:1055–1057

    Google Scholar 

  30. Ozcan S, Cicekoglu O, Kuntman H (2003) Multi-input single output filter with reduced number of passive elements employing single current conveyor. Comput Electr Eng 29:45–53

    Google Scholar 

  31. Abuelma’atti MT, Tasadduq NA (1999) A novel three inputs and one outputs universal current mode filter using plus type CCIIs. Microelectron J 30:287–292

    Google Scholar 

  32. Abuelma’atti MT, Al-Zaher HA (1998) Novel current conveyor based universal current mode biquad filter with three inputs and one output. Active Passive Elec Comp 20:235–240

    Google Scholar 

  33. Chang CM (1997) Universal active current filter with three inputs and one output using plus type CCIIs. Electron Lett 33:1207–1208

    Google Scholar 

  34. Chang CM, Chien CC, Wang HY (1994) Universal active current filter with three input using current conveyors Part 2. Int J Electron 76:87–89

    Google Scholar 

  35. Kuntman H, Cicekoglu O, Ozcan S (2002) Realization of current mode third order Butterworth filters employing equal valued passive elements and unity gain buffers. Analog Integr Circ Sig Process 30:253–256

    Google Scholar 

  36. Hwang YS, Chen JJ, Li JP (2007) New current mode all pole and elliptic filters employing current conveyors. Electr Eng 89:457–459

    Google Scholar 

  37. Liu SI, Tsao HW, Wu J, Lin TK (1990) MOSFET capacitor filters using unity gain CMOS current conveyors. Electron Lett 26:1430–1431

    Google Scholar 

  38. Senani R (1987) Network transformations for incorporating nonideal simulated immittances in the design of active filters and oscillators. IEE Proc 134:158–166

    Google Scholar 

  39. Hwang YS, Liu SI, Wu DS, Wu YP (1995) Linear transformation all-pole filters based on current conveyors. Int J Electron 79:439–445

    Google Scholar 

  40. Anday F, Gunes O (1992) Realization of nth-order transfer functions using current conveyors. Int J Circ Theor Appl 20:693–696

    Google Scholar 

  41. Soliman AM (1972) Active RC realization of current transfer function using voltage generalized-immittance converters. Int J Electron 33:273–280

    Google Scholar 

  42. Soliman AM (1973) Inductorless realization of an all-pass transistor function using the current conveyor. IEEE Trans Circ Theory 20:80–81

    Google Scholar 

  43. Soliman AM (1973) Another realization of an all-pass or a notch filter using a current conveyor. Int J Electron 35:135–136

    Google Scholar 

  44. Aronhime P (1974) Transfer-function synthesis using a current conveyor. IEEE Trans Circ Syst 21:312–313

    Google Scholar 

  45. Gopal K (1974) Comment on ‘Inductorless realization of an All pass transfer function using the current conveyor’. IEEE Trans Circ Syst 21:704–705

    Google Scholar 

  46. Naimpally SV (1975) Comments on “Transfer-function synthesis using a current conveyor”. IEEE Trans Circ Syst 22:960

    Google Scholar 

  47. Soliman AM (1977) Two novel active RC canonic band pass networks using the current conveyor. Int J Electron 42:49–54

    Google Scholar 

  48. Nandi R (1978) Equal valued earthed-capacitor realisation of a third-order low pass Butterworth characteristic using current conveyors. Electron Lett 14:699–700

    Google Scholar 

  49. Stephenson FW, Davies JD (1979) Simplified design procedures for a third-order system using current conveyors. Electron Lett 15:215–216

    Google Scholar 

  50. Davies JD, Stephenson FW (1980) Sensitivity optimization of active filters containing current conveyors and controlled sources. Int J Electron 48:283–289

    Google Scholar 

  51. Rathore TS (1980) Active complementary networks. IEEE Trans Circ Syst 27:1278–1279

    Google Scholar 

  52. Pal K (1981) Realization of current conveyor all-pass networks. Int J Electron 50:165–168

    Google Scholar 

  53. Higashimura M, Ishida M, Hara M, Fukui Y (1988) Realization of biquadratic transfer function using single current conveyor. Trans IEICE J71-A: 228–234

    Google Scholar 

  54. Tek H, Anday F (1989) Voltage transfer function synthesis using current conveyors. Electron Lett 25:1552–1553

    Google Scholar 

  55. Roberts GW, Sedra AS (1989) All current-mode frequency selective circuits. Electron Lett 25:759–761

    Google Scholar 

  56. Fabre A, Martin F, Hanafi M (1990) Current mode all pass/notch and band pass filters with reduced sensitivities. Electron Lett 26:1495–1496

    Google Scholar 

  57. Aronhime P, Nelson D, Adams C (1990) Applications of a first-generation current conveyor in current-mode circuits. Electron Lett 26:1456–1457

    Google Scholar 

  58. Liu SI, Tsao HW, Wu J (1990) Cascadable current-mode single CCII biquads. Electron Lett 26:2005–2006

    Google Scholar 

  59. Sagbas M, Koksal M (2007) Voltage-mode three-input single-output multifunction filters employing minimum number of components. Frequenz 61:87–93

    Google Scholar 

  60. Aronhime P, Dinwiddie A (1991) Biquadratic current-mode filters using a single CCI. Int J Electron 70:1063–1071

    Google Scholar 

  61. Higashimura M (1991) Current-mode transfer function using CC IIs with grounded passive elements. IEICE Trans 74:1017–1019

    Google Scholar 

  62. Chang CM (1991) Current mode all pass/notch and band pass filter using single CCII. Electron Lett 27:1812–1813

    Google Scholar 

  63. Higashimura M (1991) Realization of voltage-mode biquads using CCIIs. Electron Lett 27:1345–1346

    Google Scholar 

  64. Liu SI, Tsao HW (1991) New configurations for single CCII biquads. Int J Electron 70:609–622

    Google Scholar 

  65. Liu SI, Tsao HW, Wu J (1991) CCII-based continuous-time filters with reduced gain-bandwidth sensitivity. IEE Proc Pt-G 138:210–216

    Google Scholar 

  66. Chang CM, Chen PC (1991) Realization of current-mode transfer function using second-generation current conveyors. Int J Electron 71:809–815

    Google Scholar 

  67. Alami M, Fabre A (1991) Insensitive current-mode band pass filter implemented from two current conveyors. Electron Lett 27:897–899

    Google Scholar 

  68. Chang CM (1991) Universal active current filters using single second-generation current conveyor. Electron Lett 27:1614–1417

    Google Scholar 

  69. Liu SI, Tsao HW (1991) The single CCII biquads with high-input impedance. IEEE Trans Circ Syst 38:456–461

    Google Scholar 

  70. Liu SI, Kuo JH, Tsay JH (1992) New CCII-based current-mode biquadratic filters. Int J Electron 72:243–252

    Google Scholar 

  71. Fabre A, Houle JL (1992) Voltage-mode and current-mode Sallen-Key implementation based on translinear conveyors. IEE Proc Pt-G 139:491–497

    Google Scholar 

  72. Hou CL, Wu YP (1992) New methods of synthesizing transfer functions by applying CCIIs. Int J Electron 72:119–128

    Google Scholar 

  73. Higashimura M (1992) A novel configuration for voltage-mode biquads using a single current conveyor. Microelectron J 23:359–362

    Google Scholar 

  74. Chang CM, Chien CC, Wang HY (1993) Universal active current filters using single second-generation current conveyor. Electron Lett 29:1159–1160

    Google Scholar 

  75. Chang CM (1993) Current-mode low pass, band pass and high pass biquads using two CCIIs. Electron Lett 29:2020–2021

    Google Scholar 

  76. Abuelma’atti MT (1993) New current-mode-active filters employing current conveyors. Int J Circ Theor Appl 21:93–99

    Google Scholar 

  77. Svoboda JA (1994) Comparison of RC op-amp and RC current conveyor filters. Int J Electron 76:615–626

    Google Scholar 

  78. Soliman AM (1994) Kerwin-Huelsman-Newcomb circuit using current conveyors. Electron Lett 30:2019–2020

    Google Scholar 

  79. Fabre A, Dayoub F, Duruisseau L, Kamoun M (1994) High input impedance insensitive second-order filters implemented from current conveyors. IEEE Trans Circ Syst-I 41:918–921

    Google Scholar 

  80. Wu DS, Hwang YS, Liu SI, Wu YP (1994) New multifunction filter using an inverting CCII and a voltage follower. Electron Lett 30:551–552

    Google Scholar 

  81. Nandi R (1994) Insensitive current mode realization of third-order Butterworth characteristic using current conveyors. IEEE Trans Circ Syst-I 41:925–927

    Google Scholar 

  82. Gunes EO, Anday F (1995) Realization of nth-order voltage transfer function using CCII+. Electron Lett 31:1022–1023

    Google Scholar 

  83. Soliman AM (1995) Current conveyors steer universal filter novel arrangement delivers low pass, band pass, and high pass response, inverting and non-inverting. IEEE Circ Devices Mag 11:45–46

    Google Scholar 

  84. Anandamohan PV (1995) New current mode biquad on Friend-Deliyannis active RC biquad. IEEE Trans Circ Syst-II 42:225–228

    Google Scholar 

  85. Abuelma’atti MT, Quddus A (1995) Programmable current-conveyor-based voltage mode filters with single input and five outputs. Active Passive Electron Comp 18:273–278

    Google Scholar 

  86. Liu SI, Chen JJ, Hwang YS (1995) New current mode biquad filters using current followers. IEEE Trans Circ Syst-I 42:380–383

    Google Scholar 

  87. Fabre A, Alami M (1995) Universal current mode biquad implemented from two second generation current conveyors. IEEE Trans Circ Syst-I 42:383–385

    Google Scholar 

  88. Celma S, Sabadell J, Martinez P (1995) Universal filter using unity-gain cells. Electron Lett 31(21):1817–1818

    Google Scholar 

  89. Acar C, Ozoguz S (1996) High-order voltage transfer function synthesis using CCII+ based unity gain current amplifiers. Electron Lett 32:2030–2031

    Google Scholar 

  90. Acar C (1996) Nth-order all pass voltage transfer function synthesis using CCII+ s: signal-flow graph approach. Electron Lett 32:727–729

    Google Scholar 

  91. Acar C (1996) Nth-order low pass voltage transfer function synthesis using CCII+ s: signal-flow graph approach. Electron Lett 32:159–160

    Google Scholar 

  92. Soliman AM (1996) New inverting-non-inverting band pass and low pass biquad circuit using current conveyors. Int J Electron 81:577–583

    Google Scholar 

  93. Vrba K, Cajka J, Zeman V (1996) RC-active N-th order low pass filter. J Electr Eng 47:257–259

    Google Scholar 

  94. Nakai K, Yamamoto G, Nakamura T (1996) A configuration of state variable biquad filters using current conveyors. IEICE Trans Fundament E-79:639–641

    Google Scholar 

  95. Abuelma’atti MT, Quddus A (1996) Programmable voltage-mode multifunction filter using two current conveyors and one operational transconductance amplifier. Active Passive Electron Comp 19:133–138

    Google Scholar 

  96. Nandi R (1996) Precise insensitive current-mode third-order low pass Butterworth characteristics. IEE Proc Circ Devices Syst 143:223–224

    MATH  Google Scholar 

  97. Abuelma’atti MT, Al- Qahtani MA (1996) Current mode universal filters using unity-gain cells. Electron Lett 32:1077–1078

    Google Scholar 

  98. Celma S, Martinez PA, Sabadell J (1996) A transformation method for equivalent infinite-gain Op-amp to unity-gain CCII networks. IEEE Trans Circ Syst-I 43:61–63

    Google Scholar 

  99. Acar C, Kuntman HK (1996) Limitations on input signal level in current-mode active-RC filters using CCIIs. Electron Lett 32:1461–1462

    Google Scholar 

  100. Soliman AM (1996) Comment on ‘The single CC II biquads with high-input impedance’. IEEE Trans Circ Syst-I 43(1):65

    Google Scholar 

  101. Fabre A, Amrani H, Saaid O (1996) Current-mode band-pass filters with Q-magnification. IEEE Trans Circ Syst-II 43:839–842

    Google Scholar 

  102. Cajka J, Lindovsky D (1997) Universal RC-active networks using CCII+. J Electr Eng 48:98–100

    Google Scholar 

  103. Soliman AM (1997) Theorems relating to port interchange in current mode CCII circuits. Int J Electron 82:585–604

    Google Scholar 

  104. Acar C (1997) On the realization of current-mode filters using second-generation current conveyors. Int J Circ Theor Appl 25:229–233

    Google Scholar 

  105. Zhang X, Kambayashi N, Shinada Y (1997) A realization of active current-mode resonator with complex coefficients using CCIIs. IEICE Trans Fundament 2:413–415

    Google Scholar 

  106. Lata ZJ, Aronhime PB (1997) Cascadable current-mode biquads. Analog Integr Circ Sig Process 13:275–284

    Google Scholar 

  107. Cajka J, Dostal T, Vrba K (1997) Realization of Nth-order voltage transfer function using current conveyors CCII. Radioengineering 6:22–25

    Google Scholar 

  108. Vrba K, Cajka J (1997) High-order one–port elements for low pass filter realization. J Electr Eng 48:31–34

    Google Scholar 

  109. Soliman AM (1997) Generation of current conveyor-based all-pass filter from op-amp based circuits. IEEE Trans Circ Syst-II 44:324–330

    Google Scholar 

  110. Cajka J, Vrba K, Lindovsky D (1997) Network function synthesis using current conveyors. J Electr Eng 48:209–211

    Google Scholar 

  111. Hou CL, Wu JS (1997) Universal cascadable current-mode biquad using only four CCIIs. Int J Electron 82:125–129

    Google Scholar 

  112. Gunes ECEO, Anday F (1997) Realization of voltage and current-mode transfer functions using unity-gain cells. Int J Electron 83:209–213

    Google Scholar 

  113. Papazoglou CA, Karybakas CA (1997) Noninteracting electronically tunable CCII-based current mode biquadratic filters. IEE Proc Circ Devices Syst 144:178–184

    Google Scholar 

  114. Abuelma’atti MT, Farooqui AA (1998) Universal current-conveyors-based current-mode filters with single input and three outputs. Active Passive Electron Comp 20:195–200

    Google Scholar 

  115. Abuelma’atti MT (1998) Programmable current-mode universal active filters employing current conveyors. Active Passive Electron Comp 21:221–230

    Google Scholar 

  116. Cabeza R, Carlosena A (1998) A cautionary note on stability of current conveyor based circuits. Int J Circ Theor Appl 26:215–218

    Google Scholar 

  117. Soliman AM (1998) Current conveyor filters: classification and review. Microelectron J 29:133–149

    Google Scholar 

  118. Soliman AM (1998) Generation of CCII and CFOA filters from passive RLC filters. Int J Electron 85:293–312

    Google Scholar 

  119. Horng JW (1999) Inverting and/or non-inverting biquad circuit using second-generation current conveyors. Int J Electron 86:297–303

    Google Scholar 

  120. Karybakas CA, Papazoglou CA (1999) Low-sensitive CCII-based biquadratic filters offering electronic frequency shifting. IEEE Trans Circ Syst-II 46:527–539

    Google Scholar 

  121. Cicekoglu O (1999) Comments on ‘Multifunction biquadratic filters using current conveyors’. IEEE Trans Circ Syst-II 46:658–659

    Google Scholar 

  122. Bhaskar DR, Sharma VK, Monis M, Rizvi SMI (1999) New current-mode universal biquad filter. Microelectron J 30:837–839

    Google Scholar 

  123. Toker A, Ozoguz S (2000) Insensitive current-mode universal filter using dual output current conveyors. Int J Electron 87:667–674

    Google Scholar 

  124. Abuelma’atti MT, Tasadduq NA (2000) Current-mode low pass, band pass and high pass filter using CCII+ s. Frequenz 54:162–164

    Google Scholar 

  125. Toker A, Cicekoglu O, Ozcan S, Kuntman H (2001) High-output-impedance transadmittance-type continuous-time multifunction filter with minimum active elements. Int J Electron 88:1085–1091

    Google Scholar 

  126. Horng JW (2003) High input impedance voltage-mode universal biquadratic filter using two OTAs and one CCII. Int J Electron 90:185–191

    Google Scholar 

  127. Saraswat R, Pal K, Rana S (2003) Novel grounded capacitor all-pass and notch filters using current conveyors and differential amplifier. Active Passive Electron Comp 26:167–170

    Google Scholar 

  128. Aksoy M, Ozcan S, Cicekoglu O, Kuntman H (2003) High output impedance current-mode third-order Butterworth filter topologies employing unity gain voltage buffers and equal-valued passive components. Int J Electron 90:589–598

    Google Scholar 

  129. Pal K, Rana S (2004) Some new first-order all-pass realizations using CCII. Active Passive Electron Comp 27:91–94

    Google Scholar 

  130. Horng JW, Tang HW, Wen YH (2005) Voltage-mode high input impedance inverting and/or non-inverting high pass, band pass and low pass filers using three CCIIs. J Active Passive Electron Devices 1:145–158

    Google Scholar 

  131. Hayat M, Kumar U (2005) Novel variable current gain active filter using current conveyors. J Active Passive Electron Devices 1:91–96

    Google Scholar 

  132. Kumar P, Pal K (2005) Variable Q all-pass, notch and band-pass filters using single CCUU. Frequenz 59:9–10

    Google Scholar 

  133. Pandey N, Paul SK, Bhattacharyya A, Jain SB (2006) A new mixed mode biquad using reduced number of active and passive elements. IEICE Electron Express 6:115–121

    Google Scholar 

  134. Minaei S, Goknar IC, Cicekoglu O (2006) A new differential configuration suitable for realization of high CMRR all-pass/notch filters. Electr Eng 88:317–326

    Google Scholar 

  135. Kumar P, Pal K (2006) High input impedance band pass, all pass and notch filters using two CCIIs. HAIT J Sci Eng A 3:2–13

    Google Scholar 

  136. Khan IQ, Khan MR, Afzal N (2006) Digitally programmable multifunctional current mode filter using CCIIs. J Active Passive Electron Devices 1:213–220

    Google Scholar 

  137. Dostal T, Axman V (2007) Biquads based on single negative impedance converter implemented by classical current conveyor. Radioengineering 16:96–102

    Google Scholar 

  138. Kumar P, Pal K, Rana S (2008) High input impedance universal biquadratic filters using current conveyors. J Active Passive Electron Devices 3:17–27

    Google Scholar 

  139. Kumar P, Pal K (2008) Universal biquadratic filter using a single current conveyor. J Active Passive Electron Devices 3:7–16

    Google Scholar 

  140. Yuce E, Minaei S (2008) Signal limitations of the current-mode filters employing current conveyors. Int J Electron Commun (AEU) 62:193–198

    Google Scholar 

  141. Soliman AM (2009) Current mode universal filters with grounded passive elements filters with grounded passive elements and using single outputs current conveyors. J Active Passive Electron Devices 4:55–62

    Google Scholar 

  142. Soliman AM (1998) Equal-R, Equal-C current mode Butterworth lowpass filters. IEICE Trans Fundament 2:340–342

    Google Scholar 

  143. Weng RM, Lai JR, Lee MH (2000) New universal biquad filters using only two unity-gain cells. Int J Electron 87:57–61

    Google Scholar 

  144. Metin B, Pal K, Cicekoglu O (2012) A new approach for high-input impedance in voltage mode filters using first-generation current conveyor in place of second-generation current conveyor. Int J Electron 99:131–139

    Google Scholar 

  145. Hwang YS, Hung PT, Chen W, Liu SI (2002) CCII-based linear transformation elliptic filters. Int J Electron 89:123–133

    Google Scholar 

  146. Ozoguz S, Toker A, Cicekoglu O (1998) High output impedance current mode multifunction filter with minimum number of active and reduced number of passive elements. Electron Lett 34:1807–1809

    Google Scholar 

  147. Soliman AM (2008) Current mode universal filters using current conveyors: classification and review. Circ Syst Sig Process 27:405–427

    MathSciNet  Google Scholar 

  148. Soliman AM (2008) History and progress of the Tow-Thomas Bi-quadratic filter. Part I. Generation and op-amp realizations. J Circ Syst Comput 17:33–54

    Google Scholar 

  149. Soliman AM (2008) History and progress of the Tow-Thomas biquadratic filter Part II: OTRA, CCII, and DVCC realizations. J Circ Syst Comput 17:797–826

    Google Scholar 

  150. Soliman AM (2008) History and progress of the Kerwin-Huelsman Newcomb filter: generation and op-amp realizations. J Circ Syst Comput 17:637–658

    Google Scholar 

  151. Metin B, Toker A, Terzioglu H, Cicekoglu O (2003) A new all-pass section for high performance signal processing with a single CCII-. Frequenz 57:11–12

    Google Scholar 

  152. Singh VK, Senani R (1990) New multifunction active filter configuration employing current. Electron Lett 26:1814–1815

    Google Scholar 

  153. Higashimura M, Fukui Y (1988) Realization of all-pass and notch filter using a single current conveyor. Int J Electron 65:823–828

    Google Scholar 

  154. Hou CL, Wu YP, Liu SI (1991) New configuration for single-CCII first order and biquadratic current-mode filters. Int J Electron 71:637–644

    Google Scholar 

  155. Khan IA, Zaid MH (2000) Multifunctional translinear-C current mode filter. Int J Electron 87:1047–1051

    Google Scholar 

  156. Horng JW (2005) Current conveyors based all pass filters and quadrature oscillators employing grounded capacitors and resistors. Comput Electr Eng 31:81–92

    MATH  Google Scholar 

  157. Senani R (1994) Two ICs make biquad filter. Circuit ideas, electronics and wireless world. Reed Business Publishing Ltd. UK, p 922

    Google Scholar 

  158. Fabre A, Alam M (1993) Insensitive current mode notch filter implemented form translinear conveyors. Int J Electron 74:735–739

    Google Scholar 

  159. Roberts GW, Sedra AS (1992) A general class of current amplifier-based biquadratic filter circuits. IEEE Trans Circ Syst-I 39:257–263

    MATH  Google Scholar 

  160. Hassan TM, Mahmoud SA (2009) Fully-programmable universal filer with independent gain –ω0-Q control based on new digitally programmable CMOS CCII. J Circ Syst Comput 18:875–897

    Google Scholar 

  161. Cicekoglu O, Ozcan S, Kuntman H (1999) Insensitive multifunction filter implemented with current conveyors and only grounded passive elements. Frequenz 53:158–160

    Google Scholar 

  162. Ozoguz S, Toker A, Cicekoglu O (1999) New current mode universal filters using only four (CCII+)s. Microelectron J 30:255–258

    Google Scholar 

  163. Horng JW, Lay JR, Chang CW, Lee MH (1997) High input impedance voltage mode multifunction filters using plus-type CCIIs. Electron Lett 33:472–473

    Google Scholar 

  164. Svoboda JA (1994) Transfer function synthesis using current conveyors. Int J Electron 76:611–614

    Google Scholar 

  165. Horng JW, Hou CL, Chang CM, Chung WY, Liu HL, Lin CT (2006) High output impedance current-mode first order all pass networks with four grounded components and two CCIIs. Int J Electron 93:613–621

    Google Scholar 

  166. Horng JW (2010) Voltage/current mode universal biquadratic filter using single CCII+. Indian J Pure Appl Phys 48:149–756

    Google Scholar 

  167. Kerwin W, Huelsman L, Newcomb R (1967) State variable synthesis for insensitive integrated circuit transfer functions. IEEE J Solid State Circ 2:87–92

    Google Scholar 

  168. Thomas L (1971) The biquad Part-I – some practical design considerations. IEEE Trans Circ Theor 18:350–357

    Google Scholar 

  169. Tow J (1969) A step by step active filter design. IEEE Spectrum 6:64–68

    Google Scholar 

  170. Akerberg D, Mossberg K (1974) A versatile active RC building block with inherent compensation for the finite bandwidth of the amplifier. IEEE Trans Circ Syst 21:75–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Senani, R., Bhaskar, D.R., Singh, A.K. (2015). First, Second and Higher Order Filter Design Using Current Conveyors. In: Current Conveyors. Springer, Cham. https://doi.org/10.1007/978-3-319-08684-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08684-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08683-5

  • Online ISBN: 978-3-319-08684-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics