Skip to main content

Experiments with GPU-Acceleration for Solving a Radiative Transfer Problem

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8582))

Included in the following conference series:

  • 2808 Accesses

Abstract

High performance computing systems are increasingly incorporating the computational power provided by accelerators, especially GPUs. With the programmability of GPUs greatly facilitated by OpenCL or NVIDIA’s CUDA, with support for full double precision on GPUs, many challenging problems are benefiting from these processing units. It is well-known that memory latency is the speed limiting factor on GPUs. To hide memory latency, kernel instances must be executed in parallel on the same core, making sparse data more difficult to deal with than dense data. In this work we examine the numerical solution of a radiative transfer problem. We show that integral problem formulations relying on sparse linear algebra computations can benefit from the computing power of such devices, achieving an average speedup of 50× when compared to a representative CPU implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1960)

    Google Scholar 

  2. Ahues, M., d’Almeida, F.D., Largillier, A., Titaud, O., Vasconcelos, P.: An L 1 refined projection approximate solution of the radiation transfer equation in stellar atmospheres. Journal of Computational and Applied Mathematics 140(1-2), 13–26 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bell, N., Dalton, S., Olson, L.N.: Exposing fine-grained parallelism in algebraic multigrid methods. SIAM Journal on Scientific Computing 34(4), C123 – C152 (2012)

    Google Scholar 

  4. Bell, N., Garland, M.: Cusp: Generic parallel algorithms for sparse matrix and graph computations (2012), http://cusp-library.googlecode.com , version 0.3.0

  5. Bell, N., Hoberock, J.: Thrust: A productivity-oriented library for CUDA. GPU Computing Gems 7 (2011)

    Google Scholar 

  6. Benzi, M.: Preconditioning techniques for large linear systems: a survey. Journal of Computational Physics 182(2), 418–477 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Busbridge, I.: The mathematics of radiative transfer, vol. 369. Cambridge University Press (1960)

    Google Scholar 

  8. Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J., Barkai, D., Berthou, J., Boku, T., Braunschweig, B., et al.: The international exascale software project roadmap. International Journal of High Performance Computing Applications 25(1), 3–60 (2011)

    Article  Google Scholar 

  9. NVIDIA Corporation: CULA Sparse Reference Manual (2013), http://www.culatools.com/cula_sparse_programmers_guide/

  10. NVIDIA Corporation: NVIDIA CUDA C Programming Guide (February 2014), http://docs.nvidia.com/cuda/

  11. Roman, J.E., Vasconcelos, P.B.: Harnessing GPU power from high-level libraries: Eigenvalues of integral operators with SLEPc. Procedia Computer Science 18, 2591–2594 (2013)

    Article  Google Scholar 

  12. Rupp, K., Rudolf, F., Weinbub, J.: ViennaCL - A High Level Linear Algebra Library for GPUs and Multi-Core CPUs. In: Intl. Workshop on GPUs and Scientific Applications, pp. 51–56 (2010)

    Google Scholar 

  13. Rutily, B.: Multiple scattering theory and integral equations. In: Constanda, C., Ahues, M., Largillier, A. (eds.) Integral Methods in Science and Engineering, pp. 211–232. Birkhäuser (2004)

    Google Scholar 

  14. Rutily, B., Chevallier, L.: The finite Laplace transform for solving a weakly singular integral equation occurring in transfer theory. Journal of Integral Equations and Applications 16(4), 389–409 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Saad, Y., van der Vorst, H.A.: Iterative solution of linear systems in the 20th century. Journal of Computational and Applied Mathematics 123, 1–33 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Stone, J.E., Gohara, D., Shi, G.: OpenCL: A parallel programming standard for heterogeneous computing systems. IEEE Design & Test 12(3), 66–73 (2010), http://dx.doi.org/10.1109/MCSE.2010.69

    Google Scholar 

  17. Tuminaro, R.S.: Parallel smoothed aggregation multigrid: aggregation strategies on massively parallel machines. In: Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM). p. 5. IEEE Computer Society (2000)

    Google Scholar 

  18. Vasconcelos, P.B., d’Almeida, F.: Performance evaluation of a parallel algorithm for a radiative transfer problem. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 864–871. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Vasconcelos, P.B., Marques, O., Roman, J.E.: Parallel eigensolvers for a discretized radiative transfer problem. In: Palma, J.M.L.M., Amestoy, P.R., Daydé, M., Mattoso, M., Lopes, J.C. (eds.) VECPAR 2008. LNCS, vol. 5336, pp. 336–348. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Vasconcelos, P.B., Marques, O. (2014). Experiments with GPU-Acceleration for Solving a Radiative Transfer Problem. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8582. Springer, Cham. https://doi.org/10.1007/978-3-319-09147-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09147-1_40

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09146-4

  • Online ISBN: 978-3-319-09147-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics