Skip to main content

Modelling Wave Refraction Pattern Using AIRSAR And POLSAR C-Band Data

  • Conference paper
Computational Science and Its Applications – ICCSA 2014 (ICCSA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8584))

Included in the following conference series:

  • 1632 Accesses

Abstract

This study has demonstrated new approach for simulation of wave refraction pattern in airborne radar data. In doing so, the quasi-linear algorithm used to model significant wave height based on new approach of azimuth cut-off algorithm. The study shows that wave refraction pattern can simulate from AIRSAR and POLSAR data with convergence and divergence spectra energy of 0.84 and 0.4 m2 sec, respectively. In conclusion, modification of conventional azimuth cut-off algorithm can be used to retrieve significant wave height in Cvv- band data under circumstance of wave transformation using first order Partial Differential Equation (PDEs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Forget, F., Broche, P., Cuq, F.: Principles of Swell Measurement by SAR with Application to ERS-1 Observations off the Mauritanian Coast. Int. J. Rem. Sen. 16, 2403–2422 (1995)

    Article  Google Scholar 

  2. Herbers, T.H., Elgar, C., Guza, R.T.: Directional Spreading of Waves in the Nearshore. J. Geophys. Res. 104, 7683–7693 (1999)

    Article  Google Scholar 

  3. Hasselmann, K., Hasselmann, S.: On the Nonlinear Mapping of An Ocean Spectrum and Its Inversion. J. Geophys. Res. 96, 10,713–10,799 (1991)

    Article  Google Scholar 

  4. Li, X., Lehner, S., Rosenthal, W.: Investigation of Ocean Surface Wave Refraction Using TerraSAR-X Data. IEEE Tran. Geos. Remote Sens. 48, 830–840 (2010)

    Article  Google Scholar 

  5. Li, X.M., Lehnera, S., He, M.X.: Ocean Wave Measurements Based on Satellite Synthetic Aperture Radar (SAR) and Numerical Wave Model (WAM) Data–Extreme Sea State and Cross Sea Analysis. Int. J. Rem. Sen. 29, 6403–6416 (2008)

    Article  Google Scholar 

  6. Maged, M.M., Cracknell, A., Hashim, M.: 3-D Visualizations of Coastal Bathymetry by Utilization of Airborne TOPSAR Polarized Data. Int. J. Dig. Ear. 3, 1753–8955 (2010)

    Google Scholar 

  7. Maged, M., Cracknell, A., Hashim, M.: 3D Coastal Geomorphology reconstruction Using Differential Synthetic Aperture Radar Interferometry (DInSAR). Int. J. of Com. Sci. and Soft. Tech. 3, 1–4 (2010)

    Google Scholar 

  8. Maged, M., Hashim, M., Cracknell, A.: 3D Reconstruction of Coastal Bathymetry from AIRSAR/POLSAR data. Chin. J. Ocean. and Lim. 27(2009), 117–123 (2009)

    Google Scholar 

  9. Maged, M.: Velocity Bunching Model for Modelling Wave Spectra along East Coast of Malaysia. J. Ind. Soc. Rem. Sens. 32, 185–198 (2004)

    Article  Google Scholar 

  10. Maged, M.: TOPSAR Wave Spectra Model and Coastal Erosion Detection. Int. J. App. Ear. Obs. and Geo. 3, 357–365 (2001)

    Article  Google Scholar 

  11. Maged, M.: Operational of Canny Algorithm on SAR Data for Modeling Shoreline Change. Phot. Fer. Geo. 2, 93–102 (2001)

    Google Scholar 

  12. Maged, M.: ERS-1 Modulation Transfer Function Impact on Shoreline Change. Int. J. App. Ear. Obs. and Geo. 4, 279–294 (2003)

    Article  Google Scholar 

  13. Schulz-Stellenfleth, J., Lehner, S.: Measurement of 2-D Sea Surface Elevation Fields Using Complex Synthetic Aperture Radar Data. IEEE Trans. Geo. and Rem. Sen. 42, 1149–1160 (2004)

    Google Scholar 

  14. Schulz-Stellenfleth, J., Koing, T., Lehner, S.: An Empirical Approach for the Retrieval of Integral Ocean Wave Parameters from Synthetic Aperture Radar Data. J. Geo. Res. 112, C03019–C03033 (2007)

    Google Scholar 

  15. Schulz-Stellenfleth, J., Lehner, S., Dhoja, D.: A Parametric Scheme for the Retrieval of Two-dimensional Ocean Wave Spectra from Synthetic Aperture Radar Look Cross Spectra. J. Geo. Res. 110, C05004–C05011 (2005)

    Google Scholar 

  16. Schuler, D.L., Lee, J.S., Kasilingam, D., Pottier, E.: Measurement of Ocean Surface Slopes and Wave Spectra Using Polarimetric SAR Image Data. Rem. Sen. of Env. 91, 198–211 (2004)

    Article  Google Scholar 

  17. Person, W.J., Moskowitz, L.: A Proposed Spectral From Fully Developed Wind Seas Based on the Similarity Theory of S.A. Kitaigorodskii. J. Geo. Res. 69, 5181–5190 (1964)

    Article  Google Scholar 

  18. Populus, J., Aristaghes, C., Jonsson, L., Augustin, J.M., Pouliquen, E.: The Use of SPOT Data For Wave Analysis. Rem. Sen. Env. 36, 55–65 (1991)

    Article  Google Scholar 

  19. Vachon, P.W., Harold, K.E., Scott, J.: Airborne and Space-borne Synthetic Aperture Radar Observations of Ocean Waves. J. Atm. Oce. 32, 83–112 (1994)

    Article  Google Scholar 

  20. Vachon, P.W., Liu, A.K., Jackson, F.C.: Near-shore Wave Evolution Observed by Airborne SAR during SWADE. J. Atm. Oce. 2, 363–381 (1995)

    Google Scholar 

  21. Zelina, Z.I., Arshad, A., Lee, S.C., Japar, S., Law, A., Nik Mustapha, R.A., Maged, M.M.: East coast of peninsular Malaysia. In: Sheppard, C. (ed.) Sea at The Millennium: An Environmental Evaluation, Oxford, vol. II, pp. 345–359 (2000)

    Google Scholar 

  22. Zebker, H.A.: The TOPSAR Interferometric Radar Topographic Mapping Instrument. IEEE Tran. Geos. Rem. Sen. 30, 933–940 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Marghany, M. (2014). Modelling Wave Refraction Pattern Using AIRSAR And POLSAR C-Band Data. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2014. ICCSA 2014. Lecture Notes in Computer Science, vol 8584. Springer, Cham. https://doi.org/10.1007/978-3-319-09153-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09153-2_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09152-5

  • Online ISBN: 978-3-319-09153-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics