Skip to main content

Boltzmann Equation with Time-Varying Fields

  • Chapter
  • First Online:
Kinetics and Spectroscopy of Low Temperature Plasmas

Part of the book series: Graduate Texts in Physics ((GTP))

  • 1513 Accesses

Abstract

This chapter analyses the effects produced by a time-varying electric field in the electron kinetics. The behaviour exhibited by the electron velocity distribution function is controlled by two characteristic relaxation frequencies, one for energy and another for momentum transfer, when compared with the field frequency. The cases of high-frequency (HF) and radio-frequency (RF) fields are analysed separately, since they correspond to situations in which no time-modulation and large time-modulation exist, respectively, in the isotropic part of the electron velocity distribution. This chapter also analyses the electron kinetics under the simultaneous effects of a HF electric field and a stationary external magnetic field, with leads to electron cyclotron resonance (ECR) when the electron cyclotron frequency equals the field-frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W.P. Allis, Motions of ions and electrons, in Handbuch der Physik, vol. 21. ed. by S. Flügge (Springer, Berlin, 1956) pp. 383–444

    Google Scholar 

  • M. Capitelli, R. Celiberto, C. Gorse, R. Winkler, J. Wilhelm, Electron energy distribution functions in radio-frequency collision dominated nitrogen discharges. J. Phys. D: Appl. Phys. 21, 691–699 (1988)

    Article  ADS  Google Scholar 

  • J.-L. Delcroix, Physique des Plasmas: Volumes 1 and 2. Monographies Dunod (Dunod, Paris, 1963/1966) (in French)

    Google Scholar 

  • C.M. Ferreira, J. Loureiro, Electron energy distributions and excitation rates in high-frequency argon discharges. J. Phys. D: Appl. Phys. 16, 2471–2483 (1983)

    Article  ADS  Google Scholar 

  • C.M. Ferreira, J. Loureiro, Characteristics of high-frequency and direct-current argon discharges at low pressures: a comparative analysis. J. Phys. D: Appl. Phys. 17, 1175–1188 (1984)

    Article  ADS  Google Scholar 

  • C.M. Ferreira, J. Loureiro, Electron excitation rates and transport parameters in high-frequency N2 discharges. J. Phys. D: Appl. Phys. 22, 76–82 (1989)

    Article  ADS  Google Scholar 

  • C.M. Ferreira, J. Loureiro, A.B. Sá, The modelling of high-frequency discharges at low and intermediate pressure, in Proceedings 18th International Conference on Phenomena in Ionized Gases (ICPIG), Swansea, vol. Invited papers (1987), pp. 220–230

    Google Scholar 

  • N. Goto, T. Makabe, Time-dependent electron swarm parameters in RF fields in CH4 and H2. J. Phys. D: Appl. Phys. 23, 686–693 (1990)

    Google Scholar 

  • E.V. Karoulina, Yu A, Lebedev, The influence of the electron transport cross sectional shape on electron energy distribution functions in DC and microwave plasmas. J. Phys. D: Appl. Phys. 21, 411–417 (1988)

    Google Scholar 

  • J. Loureiro, Time-dependent electron kinetics in N2 and H2 for a wide range of the field frequency including electron-vibration superelastic collisions. Phys. Rev. E 47 (2), 1262–1275 (1993)

    Article  ADS  Google Scholar 

  • J. Loureiro, Wave-to-plasma power transfer in magnetically assisted high-frequency discharges in argon. J. Appl. Phys. 78 (8), 4850–4854 (1995)

    Article  ADS  Google Scholar 

  • J. Loureiro, C.M. Ferreira, Coupled electron energy and vibrational distribution functions in stationary N2 discharges. J. Phys. D: Appl. Phys. 19, 17–35 (1986)

    Article  ADS  Google Scholar 

  • J. Loureiro, C.M. Ferreira, Electron and vibrational kinetics in the hydrogen positive column. J. Phys. D: Appl. Phys. 22, 1680–1691 (1989)

    Google Scholar 

  • T. Makabe, N. Goto, The time behaviour of electron transport in RF fields in gases. J. Phys. D: Appl. Phys. 21, 887–895 (1988)

    Article  ADS  Google Scholar 

  • H. Margenau, Conduction and dispersion of ionized gases at high frequencies. Phys. Rev. 69 (9–10), 508–513 (1946)

    Article  ADS  Google Scholar 

  • H. Margenau, L.M. Hartman, Theory of high frequency gas discharges. II. Harmonic components of the distribution function. Phys. Rev. 73 (4), 309–315 (1948)

    MATH  Google Scholar 

  • J. Margot, T.W. Johnston, J. Musil, Principles of magnetically assisted microwave discharges, in Microwave Excited Plasmas, ed. by M. Moisan, J. Pelletier. Plasma Technology, vol. 4 (Elsevier, Amsterdam, 1992), pp. 181–212

    Google Scholar 

  • A.V. Phelps, L.C. Pitchford, Anisotropic scattering of electrons by N2 and its effect on electron transport. Phys. Rev. A 31 (5), 2932–2949 (1985)

    Article  ADS  Google Scholar 

  • P.A. Sá, J. Loureiro, C.M. Ferreira, Time-dependent kinetics of electrons and 3p5 4s levels of argon in high frequency plasmas. J. Phys. D: Appl. Phys. 27, 1171–1183 (1994)

    Article  ADS  Google Scholar 

  • R.F. Whitmer, G.F. Herrmann, Effects of a velocity-dependent collision frequency on wave-plasma interactions. Phys. Fluids 9 (4), 768–773 (1966)

    Article  ADS  Google Scholar 

  • R. Winkler, H. Deutsch, J. Wilhelm, Ch. Wilke, Electron kinetics of weakly ionized HF plasmas. II. Decoupling in the Fourier hierarchy and simplified kinetics at higher frequencies. Beiträge aus der Plasmaphysik (Contributions on Plasma Physics) 24 (4), 303–316 (1984)

    Google Scholar 

  • R. Winkler, M. Dilonardo, M. Capitelli, J. Wilhelm, Time-dependent solution of Boltzmann equation in RF plasmas: a comparison with the effective field approximation. Plasma Chem. Plasma Process. 7 (1), 125–137 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

1.1 A.4.1 Effective Collision Frequency and Electron Density in High-Frequency Discharges

When the effective collision frequency for momentum transfer ν m e, given by equation (3.139), is independent of electron velocity, the equation for electron momentum conservation (3.60) in high-frequency (HF) fields reduces to

$$\displaystyle{ n_{e}\;m\;\frac{\mathbf{dv_{ed}}} {dt} \; +\; n_{e}\;e\;\mathbf{E}\; =\; -\;n_{e}\;m\;\nu _{m}^{e}\;\mathbf{v_{ ed}}, }$$
(4.118)

with v ed denoting the electron drift velocity. Here, we are assuming the field frequency much larger than the characteristic relaxation frequency for energy transfer ω ≫ ν e , in order the electron density does not change appreciably during a cycle of the field oscillation. Then, for an applied field of frequency ω, we have \(\mathbf{dv_{ed}}/dt = j\omega \;\mathbf{v_{ed}}\), and the drift velocity is given by the well known formula

$$\displaystyle{ \mathbf{v_{ed}}\; =\; -\; \frac{e} {m\;(\nu _{m}^{e} + j\omega )}\;\mathbf{E}\;. }$$
(4.119)

The electron current density \(\mathbf{J_{e}} = -\;en_{e}\;\mathbf{v_{ed}}\), allows to obtain the complex conductivity from \(\mathbf{J_{e}} = \overline{\sigma _{c}}_{e}\;\mathbf{E}\), with the form

$$\displaystyle{ \overline{\sigma _{c}}_{e}\; =\; \frac{e^{2}n_{e}} {m\;(\nu _{m}^{e} + j\omega )}\;, }$$
(4.120)

whereas the time-averaged power absorbed from the field (4.15) is

$$\displaystyle{ \overline{P_{E}(t)}\; =\; \frac{1} {2}\; \frac{e^{2}n_{e}\;\nu _{m}^{e}} {m\;(\nu _{m}^{e\;2} +\omega ^{2})}\;E_{0}^{\;2}\;. }$$
(4.121)

However, when the frequency ν m e is velocity-dependent, we must consider the expression (4.9) for the complex anisotropic component

$$\displaystyle{ \mathbf{f_{e}^{1}}\; =\; \overline{f_{ e}^{1}}(v_{ e})\;e^{j\omega t}\;\mathbf{e_{ z}}\; =\; -\; \frac{1} {\nu _{m}^{e} + j\omega }\;\frac{eE_{0}} {m} \,\frac{df_{e}^{0}} {dv_{e}} \;e^{j\omega t}\;\mathbf{e_{ z}}\;, }$$
(4.122)

in the collision term of equation for momentum conservation (3.55)

$$\displaystyle{ \mathbf{I_{1}}\; =\; -\int _{0}^{\infty }m\;\frac{v_{e}} {3} \;\nu _{m}^{e}\;\mathbf{f_{ e}^{1}}\;4\pi v_{ e}^{\;2}\;dv_{ e}\;, }$$
(4.123)

assuming here the interactions of collision type only and the applied field with the form \(\mathbf{E} = -\;E_{0}\;e^{j\omega t}\;\mathbf{e_{z}}\). The complex drift velocity (4.10) and (4.11) is then

$$\displaystyle{ \mathbf{v_{ed}}\; =\; \overline{V _{e}}_{d}\;e^{j\omega t}\;\mathbf{e_{ z}}\; =\; -\;\frac{eE_{0}} {n_{e}m}\;\int _{0}^{\infty } \frac{1} {\nu _{m}^{e} + j\omega }\;\frac{df_{e}^{0}} {dv_{e}} \;\frac{4\pi v_{e}^{\;3}} {3} \,dv_{e}\;e^{j\omega t}\;\mathbf{e_{ z}}\;, }$$
(4.124)

so that substituting equation (4.123) in equation (4.118), we find

$$\displaystyle{ n_{e}m\;j\omega \;\overline{V _{e}}_{d}\; -\; n_{e}\;eE_{0}\; =\; eE_{0}\int _{0}^{\infty } \frac{\nu _{m}^{e}} {\nu _{m}^{e} + j\omega }\;\frac{df_{e}^{0}} {dv_{e}} \;\frac{4\pi v_{e}^{\;3}} {3} \;dv_{e}\;. }$$
(4.125)

In the case of a velocity-independent frequency ν m e, we immediately obtain equation (4.119) from (4.125). In fact, integrating by parts

$$\displaystyle{ \int _{0}^{\infty }\frac{df_{e}^{0}} {dv_{e}} \;\frac{4\pi v_{e}^{\;3}} {3} \;dv_{e}\; =\; -\int _{0}^{\infty }f_{ e}^{0}\;4\pi v_{ e}^{\;2}\;dv_{ e}\; =\; -\;n_{e}\;, }$$
(4.126)

we find

$$\displaystyle{ n_{e}m\;j\omega \;\overline{V }_{ed}\; -\; n_{e}\;eE_{0}\; =\; -\;eE_{0}\; \frac{\nu _{m}^{e}} {\nu _{m}^{e} + j\omega }\;n_{e} }$$
(4.127)

and therefore

$$\displaystyle{ \overline{V _{e}}_{d}\; =\; \frac{eE_{0}} {m\;(\nu _{m}^{e} + j\omega )}\;. }$$
(4.128)

A different situation occurs as ν m e depends on the electron velocity. In this case in order to express equation (4.125) with the form (4.118) and to obtain an equivalent expression (4.120) for the complex conductivity, we should consider an effective complex collision frequency \(\overline{\nu }_{eff}\) in equation (4.125), such as

$$\displaystyle{ n_{e}m\;j\omega \;\overline{V _{e}}_{d}\; -\; n_{e}\;eE_{0}\; =\; -\;n_{e}m\;\overline{\nu }_{eff}\;\overline{V _{e}}_{d}\;. }$$
(4.129)

Then, using equation (4.124) for \(\overline{V _{e}}_{d}\), we obtain

$$\displaystyle{ \overline{\nu }_{eff}\; =\;\int _{ 0}^{\infty } \frac{\nu _{m}^{e}} {\nu _{m}^{e} + j\omega }\;\frac{df_{e}^{0}} {dv_{e}} \;v_{e}^{\;3}\;dv_{ e}\; \times \left (\int _{0}^{\infty } \frac{1} {\nu _{m}^{e} + j\omega }\;\frac{df_{e}^{0}} {dv_{e}} \;v_{e}^{\;3}\;dv_{ e}\right )^{\!-1}\;. }$$
(4.130)

Obviously \(\overline{\nu }_{eff}\) allows to obtain ν m e again as this latter frequency is time-independent. When such is not the case, equation (4.129) allows to obtain an equivalent expression to equation (4.128) but with a complex frequency in place of ν m e

$$\displaystyle{ \overline{V _{e}}_{d}\; =\; \frac{eE_{0}} {m\;(\overline{\nu }_{eff} + j\omega )}\;, }$$
(4.131)

whereas the complex conductivity is

$$\displaystyle{ \overline{\sigma _{c}}_{e}\; =\; \frac{e^{2}n_{e}} {m\;(\overline{\nu }_{eff} + j\omega )}\;. }$$
(4.132)

However, separating \(\overline{\nu }_{eff}\) in real and imaginary parts, \(\overline{\nu }_{eff} =\nu _{R} + j\;\nu _{I}\), we obtain an exact equivalent expression (4.120) as follows

$$\displaystyle{ \overline{\sigma _{c}}_{e}\; =\; \frac{e^{2}\;n_{e}^{{\ast}}} {m\;(\nu ^{{\ast}} + j\omega )}\;, }$$
(4.133)

with n e and ν denoting an effective electron density and a new effective collision frequency given by

$$\displaystyle\begin{array}{rcl} & & n_{e}^{{\ast}}\; =\; \frac{n_{e}} {1 +\nu _{I}/\omega }{}\end{array}$$
(4.134)
$$\displaystyle\begin{array}{rcl} & & \nu ^{{\ast}}\; =\; \frac{\nu _{R}} {1 +\nu _{I}/\omega }\,.{}\end{array}$$
(4.135)

Separating equation (4.130) in equations for the real and imaginary parts of complex quantities, we obtain from equation for the imaginary part

$$\displaystyle{ \nu _{R}\int _{0}^{\infty } \frac{1} {\nu _{m}^{e\;2} +\omega ^{2}}\;v_{e}^{\;3}\;\frac{df_{e}^{0}} {dv_{e}} \;dv_{e}\; =\; \left (1 + \frac{\nu _{I}} {\omega } \right )\int _{0}^{\infty } \frac{\nu _{m}^{e}} {\nu _{m}^{e\;2} +\omega ^{2}}\;v_{e}^{\;3}\;\frac{df_{e}^{0}} {dv_{e}} \;dv_{e}\;, }$$
(4.136)

from which we may write

$$\displaystyle{ \nu ^{{\ast}}\; =\;\int _{ 0}^{\infty } \frac{\nu _{m}^{e}} {\nu _{m}^{e\;2} +\omega ^{2}}\;v_{e}^{\;3}\;\frac{df_{e}^{0}} {dv_{e}} \;dv_{e}\; \times \left (\int _{0}^{\infty } \frac{1} {\nu _{m}^{e\;2} +\omega ^{2}}\;v_{e}^{\;3}\;\frac{df_{e}^{0}} {dv_{e}} \;dv_{e}\right )^{\!-1}\;. }$$
(4.137)

On the other hand, from the comparison between the imaginary part of the complex conductivity (4.12)

$$\displaystyle{ \overline{\sigma _{c}}_{e}\; =\; en_{e}\;\overline{\mu _{e}}\; =\; -\;\frac{e^{2}} {m}\int _{0}^{\infty } \frac{1} {\nu _{m}^{e} + j\omega }\;\frac{df_{e}^{0}} {dv_{e}} \;\frac{4\pi v_{e}^{\;3}} {3} \;dv_{e} }$$
(4.138)

and the imaginary part of equation (4.133), we obtain

$$\displaystyle{ n_{e}^{{\ast}}\; =\; -\;(\nu ^{{\ast}\;2} +\omega ^{2})\int _{ 0}^{\infty } \frac{1} {\nu _{m}^{e\;2} +\omega ^{2}}\;\frac{df_{e}^{0}} {dv_{e}} \;\frac{4\pi v_{e}^{\;3}} {3} \;dv_{e}\;. }$$
(4.139)

When ν m e is velocity-independent, equations (4.137) and (4.139) reduce to ν  = ν m e and n e  = n e . Finally, in terms of the EEDF normalized through equation (3.166), ν and n e are written as follows

$$\displaystyle\begin{array}{rcl} & & \nu ^{{\ast}}\; =\;\int _{ 0}^{\infty } \frac{\nu _{m}^{e}} {\nu _{m}^{e\;2} +\omega ^{2}}\;u^{3/2}\; \frac{df} {du}\;du\; \times \left (\int _{0}^{\infty } \frac{1} {\nu _{m}^{e\;2} +\omega ^{2}}\;u^{3/2}\; \frac{df} {du}\;du\right )^{\!-1}{}\end{array}$$
(4.140)
$$\displaystyle\begin{array}{rcl} & & n_{e}^{{\ast}}\; =\; -\;\frac{2} {3}\;n_{e}\;(\nu ^{{\ast}\;2} +\omega ^{2})\int _{ 0}^{\infty } \frac{1} {\nu _{m}^{e\;2} +\omega ^{2}}\;u^{3/2}\; \frac{df} {du}\;du\;.{}\end{array}$$
(4.141)

As firstly pointed out in Whitmer and Herrmann (1966), the two effective parameters ν and n e have the advantage to permit the writing of a relation of the type (4.120) for the electron conductivity in HF fields, for gases in which the collision frequency for momentum transfer depends on the electron energy.

Exercises

Exercise 4.1:

Determine the expression of the velocity-averaged collision frequency for momentum transfer valid as ω ≫ ν m e, that allows to keep the time-averaged power absorbed from the field \(\overline{P_{E}(t)}\) with the same form as the effective collision frequency for momentum transfer is independent of energy.

Resolution:

When ω ≫ ν m e and ν m e(v e ) = const, we obtain the following expression for the time-averaged power absorbed from the field from equations (4.15) and (4.16)

$$\displaystyle{\overline{P_{E}(t)}\; =\; \frac{e^{2}n_{e}} {m} \;\frac{\nu _{m}^{e}} {\omega ^{2}} \;E_{rms}^{\;2}\;,}$$

so that as ν m e(v e ) ≠ const, we must consider the energy-averaged frequency

$$\displaystyle{\nu ^{{\ast}}\; =\; -\; \frac{1} {n_{e}}\int _{0}^{\infty }\nu _{ m}^{e}\;\frac{df_{e}^{0}} {dv_{e}} \;\;\frac{4\pi v_{e}^{3}} {3} \;dv_{e}\;,}$$

in order an equivalent expression for \(\overline{P_{E}(t)}\) may be used

$$\displaystyle{\overline{P_{E}(t)}\; =\; \frac{e^{2}n_{e}} {m} \;\frac{\nu ^{{\ast}}} {\omega ^{2}}\;E_{rms}^{\;2}\;.}$$

Integrating by parts the frequency ν can also be written as

$$\displaystyle{\nu ^{{\ast}}\; =\;< \frac{1} {v_{e}^{\;2}}\; \frac{d} {dv_{e}}\left (\frac{\nu _{m}^{e}\;v_{e}^{\;3}} {3} \right ) >\;.}$$

Using the normalization (3.166) the first expression for ν writes as follows

$$\displaystyle{\nu ^{{\ast}}\; =\; -\;\frac{2} {3}\int _{0}^{\infty }\nu _{ m}^{e}\;u^{3/2}\; \frac{df} {du}\;du\;.}$$

This frequency corresponds to the effective collision frequency introduced in Appendix A.4.1, in the limit ω ≫ ν m e, and it differs from the effective collision frequency \(\nu _{m}^{{\prime}}\) used with a DC field to write the electron mobility as \(\mu _{e} = e/(m\;\nu _{m}^{{\prime}})\) (see Exercise 3.6). Obviously, both result in ν m e when the frequency ν m e is velocity-independent.

Exercise 4.2:

Obtain the time-averaged power absorbed from the field by the electrons, for the case of a high-frequency field ω ≫ ν m e, directly from equation (4.22) for the isotropic component of the electron velocity distribution f e 0.

Resolution:

Multiplying the symmetric of the left-hand side member of equation (4.22) by the electron velocity \(u = \frac{1} {2}mv_{e}^{\;2}\) and integrating in all velocity space, we obtain

$$\displaystyle{\overline{P_{E}(t)}\; =\;\int _{ 0}^{\infty }u\;\;\frac{1} {2}\left (\frac{eE_{0}} {m} \right )^{2} \frac{1} {v_{e}^{\;2}}\; \frac{d} {dv_{e}}\left (\frac{v_{e}^{\;2}} {3} \; \frac{\nu _{m}^{e}} {\nu _{m}^{e\;2} +\omega ^{2}}\;\frac{df_{e}^{0}} {dv_{e}} \right )\;4\pi v_{e}^{\;2}\;dv_{ e}\;.}$$

Integrating now by parts, we find

$$\displaystyle\begin{array}{rcl} \overline{P_{E}(t)}& =& -\;\frac{1} {2}\left (\frac{eE_{0}} {m} \right )^{2}\int _{ 0}^{\infty } \frac{d} {dv_{e}}\left (\frac{1} {2}\;mv_{e}^{\;2}\right )\;\frac{v_{e}^{\;2}} {3} \; \frac{\nu _{m}^{e}} {\nu _{m}^{e\;2} +\omega ^{2}}\;\;\frac{df_{e}^{0}} {dv_{e}} \;4\pi \;dv_{e} {}\\ & =& -\;\frac{1} {2}\;\frac{(eE_{0})^{2}} {m} \int _{0}^{\infty }\; \frac{\nu _{m}^{e}} {\nu _{m}^{e\;2} +\omega ^{2}}\;\;\frac{df_{e}^{0}} {dv_{e}} \;\frac{4\pi v_{e}^{\;3}} {3} \;dv_{e} {}\\ \end{array}$$

and identifying Re\(\{\overline{\sigma _{c}}_{e}\}\) given by equation (4.16) in this expression, we can write \(\overline{P_{E}(t)}\) under the form

$$\displaystyle{\overline{P_{E}(t)}\; =\; \frac{1} {2}\;\mbox{ Re}\{\overline{\sigma _{c}}_{e}\}\;E_{0}^{\;2}\;,}$$

in accordance with equation (4.15).

Exercise 4.3:

Write the expression for the mean power absorbed from the field per electron, \(\overline{P_{E}(t)}/n_{e}\), in terms of the mean energy absorbed per collision u c (u) by an electron of energy u given by equation (4.25).

Resolution:

Replacing equation (4.25) into equations (4.15) and (4.16), we find

$$\displaystyle{\frac{\overline{P_{E}(t)}} {n_{e}} \; =\; -\; \frac{1} {n_{e}}\int _{0}^{\infty }\nu _{ m}^{e}\;u_{ c}\;\;\frac{df_{e}^{0}} {dv_{e}} \;\;\frac{4\pi v_{e}^{\;3}} {3} \;dv_{e}\;.}$$

Making the replacement of v e with u and using the EEDF normalized such as

$$\displaystyle{\int _{0}^{\infty }f\;\sqrt{u}\;du\; =\; 1\;,}$$

with both distributions linked each other through equation (3.167), we obtain

$$\displaystyle{\frac{\overline{P_{E}(t)}} {n_{e}} \; =\; -\;\frac{2} {3}\int _{0}^{\infty }u^{3/2}\;\nu _{ m}^{e}\;u_{ c}\;\; \frac{df} {du}\;\;du\;.}$$

On the other hand, starting from the first expression in the answer to Exercise 4.2, we also obtain

$$\displaystyle{\frac{\overline{P_{E}(t)}} {n_{e}} \; =\; \frac{2} {3}\int _{0}^{\infty }u\; \frac{d} {du}\left (u^{3/2}\;\nu _{ m}^{e}\;u_{ c}\;\; \frac{df} {du}\right )\;du}$$

and integrating by parts we find the same expression.

Exercise 4.4:

Write the expression for the complex mobility (4.12) and for the time-averaged absorbed power from the field per volume unit (4.15) and (4.16) in the case of an HF field, using the EEDF normalized through equation (3.166).

Resolution:

The two expressions asked are:

$$\displaystyle\begin{array}{rcl} \overline{\mu _{e}}& =& -\;\frac{2} {3}\; \frac{e} {m}\int _{0}^{\infty } \frac{u^{3/2}} {\nu _{m}^{e} + j\omega }\;\frac{df} {du}\;du {}\\ \overline{P_{E}(t)}& =& -\;\frac{2} {3}\;\frac{e^{2}n_{e}} {m} \;E_{rms}^{\;2}\int _{ 0}^{\infty }u^{3/2}\; \frac{\nu _{m}^{e}} {\nu _{m}^{e\;2} +\omega ^{2}}\;\; \frac{df} {du}\;du\;. {}\\ \end{array}$$

Although the notation seems to be identical the first expression represents a complex quantity and the second a time-averaged value of a real quantity.

Exercise 4.5:

Write the expressions of the time-averaged gain produced by the field in velocity space, \(\overline{G_{E}(t)}\), and of the power absorbed by the electrons in terms of this gain, for the case of a HF frequency electric field.

Resolution:

The gain produced by a HF field in velocity space is obtained by inserting (4.20) into equations (3.92) and (3.95)

$$\displaystyle{\overline{G_{E}(t)}\; =\; -\;\frac{1} {6}\left (\frac{eE_{0}} {m} \right )^{2} \frac{\nu _{m}^{e}} {\nu _{m}^{e\;2} +\omega ^{2}}\;\frac{df_{e}^{0}} {dv_{e}} \;4\pi v_{e}^{\;2}\;,}$$

so that using equation (4.25), we still have

$$\displaystyle{\overline{G_{E}(t)}\; =\; -\;\frac{1} {3}\;\frac{\nu _{m}^{e}\;u_{c}} {m} \;\frac{df_{e}^{0}} {dv_{e}} \;4\pi v_{e}^{\;2}\; >\; 0\;.}$$

On the other hand using equation (3.119), the time-averaged power absorbed by the electrons is given by

$$\displaystyle\begin{array}{rcl} \overline{P_{E}(t)}& =& -\int _{0}^{\infty }u\;\frac{d\overline{G_{E}}} {dv_{e}} \;dv_{e}\; =\;\int _{ 0}^{\infty }\overline{G_{ E}}\;mv_{e}\;dv_{e} {}\\ & =& -\int _{0}^{\infty }\nu _{ m}^{e}\;u_{ c}\;\frac{df_{e}^{0}} {dv_{e}} \;\frac{4\pi v_{e}^{3}} {3} \;dv_{e}\;. {}\\ \end{array}$$

In terms of the EEDF normalized through equation (3.166), we find

$$\displaystyle{\overline{G_{E}(t)}\; =\; -\;n_{e}\;\frac{2} {3}\;u^{3/2}\;\nu _{ m}^{e}\;u_{ c}\; \frac{df} {du}}$$

and

$$\displaystyle{\overline{P_{E}(t)}\; =\int _{ 0}^{\infty }\overline{G_{ E}}\;du\; =\; -\;n_{e}\;\frac{2} {3}\int _{0}^{\infty }u^{3/2}\;\nu _{ m}^{e}\;u_{ c}\; \frac{df} {du}\;du\;.}$$

Exercise 4.6:

By writing the drift velocity of electrons under a RF field as \(v_{ed}(t) = V _{d0}\;\cos (\omega t + \Phi )\) show that the power absorbed from the field (4.116) can be expressed as

$$\displaystyle{P_{E}(t)\; =\; (P_{E})_{0} +\; \frac{en_{e}E_{0}} {2} \;V _{d0}\;\cos (2\omega t + \Phi )\;.}$$

Obtain the limit values of P E (t) at low and high field frequencies.

Resolution:

The power absorbed is given by

$$\displaystyle\begin{array}{rcl} P_{E}(t)& =& (\mathbf{J_{e}}\;.\;\mathbf{E})\; =\; en_{e}\;V _{d0}\;\mbox{ Re}\{e^{j(\omega t+\Phi )}\}\;E_{ 0}\;\mbox{ Re}\{e^{j\omega t}\} {}\\ & =& \frac{en_{e}E_{0}} {2} \;V _{d0}\;[\cos (\Phi ) +\cos (2\omega t + \Phi )]\;, {}\\ \end{array}$$

so that using equation (4.111) we obtain

$$\displaystyle{P_{E}(t)\; =\; (P_{E})_{0} +\; \frac{en_{e}E_{0}} {2} \;V _{d0}\;\cos (2\omega t + \Phi )\;.}$$

When ω ≪ ν m e, v ed (t) and E(t) are in phase so that

$$\displaystyle{P_{E}(t)\; =\; en_{e}E_{0}V _{d0}\;\cos ^{2}(\omega t)\;,}$$

with \(V _{d0} = eE_{0}/(m\nu _{m}^{e})\) and \(\overline{P_{E}(t)} = en_{e}E_{0}V _{d0}/2\). On the other hand, when ω ≫ ν m e, the phase shift of the drift velocity approaches \(-\;\pi /2\) and we obtain

$$\displaystyle{P_{E}(t)\; =\; \frac{en_{e}E_{0}} {2} \;V _{d0}\;\sin (2\omega t)\;,}$$

with \(V _{d0} = eE_{0}/(m\omega )\) in accordance with equation (4.18), and therefore \(\overline{P_{E}(t)} = 0\).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Loureiro, J., Amorim, J. (2016). Boltzmann Equation with Time-Varying Fields. In: Kinetics and Spectroscopy of Low Temperature Plasmas. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-09253-9_4

Download citation

Publish with us

Policies and ethics