Skip to main content

Integrating Visual Saliency Information into Objective Quality Assessment of Tone-Mapped Images

  • Conference paper
Intelligent Computing Theory (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8588))

Included in the following conference series:

Abstract

Tone-mapped images are the low dynamic range (LDR) images converted from high dynamic range (HDR) images. Recently, the objective quality assessment of tone-mapped images is becoming a challenging problem. However, there is no mature algorithm to deal with this issue until the tone-mapped image quality index (TMQI) was proposed recently, which is tone-mapped image quality index (TMQI). Unfortunately, the pooling method of the structural fidelity map in TMQI is the simple “mean”, which makes the result unsatisfying. On the other hand, recent studies have found that different locations of an image may have different contributions to the quality perception of the human visual system. The significance of a local image region can be well characterized by a visual saliency (VS) model. Inspired by this insight, in this paper, we propose a VS-based pooling strategy for the objective quality assessment of tone-mapped images. The experimental results clearly demonstrate the efficacy of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reinhard, E., Ward, G., Pattanaik, S., Debevec, P., Heidrich, W., Myszkowski, K.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann, San Mateo (2010)

    Google Scholar 

  2. Yeganeh, H., Wang, Z.: Objective quality assessment of tone-mapped images. IEEE Trans. IP 22, 657–667 (2013)

    MathSciNet  Google Scholar 

  3. Toet, A.: Computational versus psychophysical bottom-up image saliency: A comparative evaluation study. IEEE Trans. PAMI 33, 2131–2146 (2011)

    Article  Google Scholar 

  4. Engelke, U., Kaprykowsky, H., Zepernick, H., Ndjiki-Nya, P.: Visual attention in quality assessment. IEEE Signal Processing Magazine 28, 50–59 (2011)

    Article  Google Scholar 

  5. Zhang, L., Li, H.: SR-SIM: A fast and high performance IQA index based on spectral residual. In: Proc. ICIP, pp. 1473–1476 (2012)

    Google Scholar 

  6. Hou, X., Zhang, L.: Saliency detection: A spectral residual approach. In: Proc. CVPR, pp. 1–8 (2007)

    Google Scholar 

  7. Zhang, L., Gu, Z., Li, H.: SDSP: A novel saliency detection method by combining simple priors. In: Proc. ICIP, pp. 171–175 (2013)

    Google Scholar 

  8. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. IP 13, 600–612 (2004)

    Google Scholar 

  9. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multi-scale structural similarity for image quality assessment. In: Proc. Signals, Systems and Computers, pp. 1398–1402 (2003)

    Google Scholar 

  10. Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Trans. IP 20, 1185–1198 (2011)

    Google Scholar 

  11. Cadík, M., Slavík, P.: The naturalness of reproduced high dynamic range images. In: Proc. Information Visualisation, pp. 920–925 (2005)

    Google Scholar 

  12. Barten, P.G.J.: Contrast Sensitivity of the Human Eye and Its Effects on Image Quality. SPIE, Washington, DC (1999)

    Book  Google Scholar 

  13. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Communications 31, 532–540 (1983)

    Article  Google Scholar 

  14. Mante, V., Frazor, R., Bonin, V., Geisler, W., Carandini, M.: Independence of luminance and contrast in natural scenes and in the early visual system. Nature Neuroscience 8, 1690–1697 (2005)

    Article  Google Scholar 

  15. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Transactions on Graphics 21, 267–276 (2002)

    Article  Google Scholar 

  16. Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. Computer Graphics Forum 22, 419–426 (2003)

    Article  Google Scholar 

  17. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high dynamic-range images. ACM Transactions on Graphics 21, 257–266 (2002)

    Google Scholar 

  18. Mantiuk, R., Myszkowski, K., Seidel, H.: A perceptual framework for contrast processing of high dynamic range images. ACM Transactions on Applied Perception 3, 286–308 (2006)

    Article  Google Scholar 

  19. Pattanaik, S.N., Tumblin, J., Yee, H., Greenberg, D.P.: Time dependent visual adaptation for fast realistic image display. In: Proc. Computer Graphics and Interactive Techniques, pp. 47–54 (2000)

    Google Scholar 

  20. Open Source Community (2007), http://qtpfsgui.sourceforge.net/index.php

  21. Cadík, M., Wimmer, M., Neumann, L., Artusi, A.: Image attributes and quality for evaluation of tone mapping operators. In: Proc. Computer Graphics and Applications, pp. 35–44 (2006)

    Google Scholar 

  22. Reinhard, E.: High Dynamic Range Data (2009), http://www.cs.utah.edu/~reinhard/cdrom/hdr/

  23. Ward, G.: High Dynamic Range Data (2008), http://www.anyhere.com/gward/pixformat/tiffluvimg.html

  24. Debevec, P.: High Dynamic Range Data (2010), http://www.debevec.org/Research/HDR/

  25. Wang, Z., Li, Q.: Information content weighting for perceptual image quality assessment. IEEE Trans. IP 20, 1185–1198 (2011)

    Google Scholar 

  26. Itti, L., Koch, C., Niebur, E.: A model of saliency based visual attention for rapid scene analysis. IEEE Trans. PAMI 20, 1254–1259 (1998)

    Article  Google Scholar 

  27. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, vol. 19, pp. 545–552 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, X., Zhang, L., Li, H., Lu, J. (2014). Integrating Visual Saliency Information into Objective Quality Assessment of Tone-Mapped Images. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theory. ICIC 2014. Lecture Notes in Computer Science, vol 8588. Springer, Cham. https://doi.org/10.1007/978-3-319-09333-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09333-8_41

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09332-1

  • Online ISBN: 978-3-319-09333-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics