Skip to main content

Fusing Decision Trees Based on Genetic Programming for Classification of Microarray Datasets

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

Abstract

In this paper, a genetic programming(GP) based new ensemble system is proposed, named as GPES. Decision tree is used as base classifier, and fused by GP with three voting methods: min, max and average. In this way, each individual of GP acts as an ensemble system. When the evolution process of GP ends, the final ensemble committee is selected from the last generation by a forward search algorithm. GPES is evaluated on microarray datasets, and results show that this ensemble system is competitive compared with other ensemble systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Geman, S., Bienenstock, E., Doursat, R.: Neural Networks And the Bias/Variance Di-lemma. Neural Computation 4(1), 1–58 (1992)

    Article  Google Scholar 

  2. Krogh, A., Vedelsby, J.: Neural Network Ensembles, Cross Validation, And Active Learning. In: Advances in Neural Information Processing Systems, pp. 231–238. MIT Press (1995)

    Google Scholar 

  3. Kuncheva, L.I., Whitaker, C.J.: Measures of Diversity in Classifier Ensembles and Their Rela-tionship with the Ensemble Accuracy. Machine Learning 51(2), 181–207 (2003)

    Article  MATH  Google Scholar 

  4. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Freund, Y., Schapire, R.: A Desicion-theoretic Generalization of On-line Learning And An Application to Boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  6. Ho, T.K.: Random Decision Forests. In: Proceedings of the Third International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282 (1995)

    Google Scholar 

  7. Bay, S.D.: Combining Nearest Neighbor Classifiers through Multiple Feature Subsets. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 37–45 (1998)

    Google Scholar 

  8. Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  9. Maclin, R., Shavlik, J.W., et al.: Combining the Predictions of Multiple Classifiers: Using Competitive learning to initialize neural networks. In: International Joint Conference on Artificial Intelligence, pp. 524–531. Lawrence Erlbaum Associates Ltd. (1995)

    Google Scholar 

  10. Langdon, W.B., Buxton, B.F.: Genetic programming for mining DNA chip data from cancer patients. Genetic Programming and Evolvable Machines 5(3), 251–257 (2004)

    Article  Google Scholar 

  11. Yu, J., Yu, J., Almal, A.A., Dhanasekaran, S.M., Ghosh, D., Worzel, W.P., Chinnaiyan, A.M.: Feature Selection and Molecular Classification of Cancer Using Genetic Programming. Neoplasia 9(4), 292 (2007)

    Article  Google Scholar 

  12. Liu, K., Xu, C.: A Genetic Programming-based Approach to the Classification of Multiclass Microarray datasets. Bioinformatics 25(3), 331–337 (2009)

    Article  Google Scholar 

  13. Breiman, L.: Heuristics of Instability and Stabilization in Model Selection. The Annals of Statistics 24(6), 2350–2383 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kuncheva, L.I.: A Theoretical Study on Six Cassifier Fusion Strategies. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 281–286 (2002)

    Article  Google Scholar 

  15. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

    MATH  Google Scholar 

  16. Sun, Y.: Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6), 1035–1051 (2007)

    Article  Google Scholar 

  17. Albanese, D., Visintainer, R., Merler, S., Riccadonna, S., Jurman, G., Furlanello, C.: mlpy: Machine Learning Python. Tech. rep. (2012)

    Google Scholar 

  18. Perone, C.S.: Pyevolve: a Python Open-source Framework for Genetic Algorithms. SIGEVOlution 4(1), 12–20 (2009)

    Article  Google Scholar 

  19. Petricoin III, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., Liotta, L.A.: Use of Proteomic Patterns in Serum to identify ovarian cancer. The Lancet 359(9306), 572–577 (2002)

    Article  Google Scholar 

  20. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C.D., Lander, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  21. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  22. Gordon, G.J., Jensen, R.V., Hsiao, L.-L., Gullans, S.R., Blumenstock, J.E., Ramaswamy, S., Richards, W.G., Sugarbaker, D.J., Bueno, R.: Translation of Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using Gene Expression Ratios in Lung Cancer and Mesothelioma. Cancer Research 62(17), 4963–4967 (2002)

    Google Scholar 

  23. Singh, D., Febbo, P.G., Ross, K., Jackson, D.G., Manola, J., Ladd, C., Tamayo, P., Renshaw, A.A., D’Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R., Sellers, W.R.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2), 203–209 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, K., Tong, M., Xie, S., Zeng, Z. (2014). Fusing Decision Trees Based on Genetic Programming for Classification of Microarray Datasets. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics