Skip to main content

State Complexity of Inversion Operations

  • Conference paper
Descriptional Complexity of Formal Systems (DCFS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8614))

Included in the following conference series:

Abstract

The reversal operation is well-studied in literature and the deterministic (respectively, nondeterministic) state complexity of reversal is known to be 2n (respectively, n). We consider the inversion operation where some substring of the given string is reversed. Formally, the inversion of a language L consists of all strings ux R v such that uxv ∈ L. We show that the nondeterministic state complexity of inversion is in Θ(n 3). We establish that the deterministic state complexity of the inversion is 2Ω(n ·logn), which is strictly worse than the worst case state complexity of the reversal operation. We also study the state complexity of different variants of the inversion operation, including prefix-, suffix-, and pseudo-inversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birget, J.-C.: Intersection and union of regular languages and state complexity. Information Processing Letters 43(4), 185–190 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cantone, D., Cristofaro, S., Faro, S.: Efficient string-matching allowing for non-overlapping inversions. Theoretical Computer Science 483, 85–95 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cho, D.-J., Han, Y.-S., Kang, S.-D., Kim, H., Ko, S.-K., Salomaa, K.: Pseudo-inversion on formal languages. In: Proceeding of the 13th International Conference on Unconventional and Natural Computation (to appear)

    Google Scholar 

  4. Daley, M., Ibarra, O.H., Kari, L.: Closure and decidability properties of some language classes with respect to ciliate bio-operations. Theoretical Computer Science 306(1-3), 19–38 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dassow, J., Mitrana, V.: Operations and language generating devices suggested by the genome evolution. Theoretical Computer Science 270(12), 701–738 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dassow, J., Mitrana, V., Salomaa, A.: Context-free evolutionary grammars and the structural language of nucleic acids. Biosystems 43(3), 169–177 (1997)

    Article  Google Scholar 

  7. Ésik, Z., Gao, Y., Liu, G., Yu, S.: Estimation of state complexity of combined operations. Theoretical Computer Science 410(35), 3272–3280 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gao, Y., Salomaa, K., Yu, S.: The state complexity of two combined operations: Star of catenation and star of reversal. Fundamenta Informaticae 83(1-2), 75–89 (2008)

    MATH  MathSciNet  Google Scholar 

  9. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. International Journal of Foundations of Computer Science 14(6), 1087–1102 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata – a survey. Information and Computation 209, 456–470 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kececioglu, J.D., Sankoff, D.: Exact and approximation algorithms for the inversion distance between two chromosomes. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM 1993. LNCS, vol. 684, pp. 87–105. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  12. Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal languages. Bulletin of the EATCS 111, 70–86 (2013)

    MathSciNet  Google Scholar 

  13. Lupanov, O.: A comparison of two types of finite sources. Problemy Kibernetiki 9, 328–335 (1963)

    Google Scholar 

  14. Lupski, J.R.: Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends in Genetics 14(10), 417–422 (1998)

    Article  Google Scholar 

  15. Maslov, A.: Estimates of the number of states of finite automata. Soviet Mathematics Doklady 11, 1373–1375 (1970)

    MATH  Google Scholar 

  16. Meyer, A., Fisher, M.: Economy of description by automata, grammars and formal systems. In: Proceedings of the 12th Annual Symposium on Switching and Automata Theory, pp. 188–191 (1971)

    Google Scholar 

  17. Moore, F.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic and two-way finite automata. IEEE Transactions on Computers C-20, 1211–1214 (1971)

    Article  Google Scholar 

  18. Painter, T.S.: A New Method for the Study of Chromosome Rearrangements and the Plotting of Chromosome Maps. Science 78, 585–586 (1933)

    Article  Google Scholar 

  19. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Beyond Words, vol. 3. Springer-Verlag New York, Inc. (1997)

    Google Scholar 

  20. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theoretical Computer Science 383(2-3), 140–152 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Salomaa, K., Yu, S.: On the state complexity of combined operations and their estimation. International Journal of Foundations of Computer Science 18, 683–698 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Searls, D.B.: The Computational Linguistics of Biological Sequences. In: Artificial Intelligence and Molecular Biology, pp. 47–120 (1993)

    Google Scholar 

  23. Shallit, J.: A Second Course in Formal Languages and Automata Theory, 1st edn. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  24. Vellozo, A.F., Alves, C.E.R., do Lago, A.P.: Alignment with non-overlapping inversions in O(n 3)-time. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 186–196. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Wood, D.: Theory of Computation. Harper & Row (1986)

    Google Scholar 

  26. Yokomori, T., Kobayashi, S.: DNA evolutionary linguistics and RNA structure modeling: A computational approach. In: Proceedings of INBS 1995, pp. 38–45. IEEE Computer Society (1995)

    Google Scholar 

  27. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoretical Computer Science 125(2), 315–328 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cho, DJ., Han, YS., Ko, SK., Salomaa, K. (2014). State Complexity of Inversion Operations. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds) Descriptional Complexity of Formal Systems. DCFS 2014. Lecture Notes in Computer Science, vol 8614. Springer, Cham. https://doi.org/10.1007/978-3-319-09704-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09704-6_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09703-9

  • Online ISBN: 978-3-319-09704-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics