Skip to main content

Entropy-Based Data Mining on the Example of Cardiac Arrhythmia Suppression

  • Conference paper
Brain Informatics and Health (BIH 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8609))

Included in the following conference series:

  • 1738 Accesses

Abstract

Heart rate variability (HRV) is the variation of the time interval between consecutive heartbeats and depends on the extrinsic regulation of the heart rate. It can be quantified using nonlinear methods such as entropy measures, which determine the irregularity of the time intervals.

In this work, approximate entropy (ApEn), sample entropy (SampEn), fuzzy entropy (FuzzyEn) and fuzzy measure entropy (FuzzyMEn) were used to assess the effects of three different cardiac arrhythmia suppressing drugs on the HRV after a myocardial infarction.

The results show that the ability of all four entropy measures to distinguish between pre- and post-treatment HRV data is highly significant (p < 0.01). Furthermore, approximate entropy and sample entropy are able to differentiate significantly (p < 0.05) between the tested arrhythmia suppressing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C., Suri, J.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006)

    Article  Google Scholar 

  2. American Heart Association Inc.: European Society of Cardiology: Guidelines – heart rate variability. Eur. Heart J. 17, 354–381 (1996)

    Google Scholar 

  3. Smith, A.L., Reynolds, K.J., Owen, H.: Correlated Poincaré indices for measuring heart rate variability. Australasian physical & engineering sciences in medicine / supported by the Australasian College of Physical Scientists in Medicine and the Australasian Association of Physical Sciences in Medicine 30, 336–341 (2007)

    Google Scholar 

  4. Holzinger, A., Hörtenhuber, M., Mayer, C., Bachler, M., Wassertheurer, S., Pinho, A.J., Koslicki, D.: On entropy-based data mining. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 209–226. Springer, Heidelberg (2014)

    Google Scholar 

  5. Stein, P.K., Kleiger, R.E., Domitrovich, P.P., Schechtman, K.B., Rottman, J.N.: Clinical and demographic determinants of heart rate variability in patients post myocardial infarction: insights from the cardiac arrhythmia suppression trial (cast). Clinical Cardiology 23, 187–194 (2000)

    Article  Google Scholar 

  6. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101, E215–E220 (2000)

    Google Scholar 

  7. Epstein, A.E., Bigger, J.T., Wyse, D.G., Romhilt, D.W., Reynolds-Haertle, R.A., Hallstrom, A.P.: Events in the cardiac arrhythmia suppression trial (cast): mortality in the entire population enrolled. Journal of the American College of Cardiology 18, 14–19 (1991)

    Article  Google Scholar 

  8. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. U.S.A. 88, 2297–2301 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)

    Google Scholar 

  10. Chen, W., Zhuang, J., Yu, W., Wang, Z.: Measuring complexity using FuzzyEn, ApEn, and SampEn. Med. Eng. Phys. 31, 61–68 (2009)

    Article  Google Scholar 

  11. Liu, C., Li, K., Zhao, L., Liu, F., Zheng, D., Liu, C., Liu, S.: Analysis of heart rate variability using fuzzy measure entropy. Comput. Biol. Med. 43, 100–108 (2013)

    Article  Google Scholar 

  12. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences 88, 2297–2301 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pincus, S.: Approximate entropy (apen) as a complexity measure. Chaos: An Interdisciplinary Journal of Nonlinear Science 5, 110–117 (1995)

    Article  Google Scholar 

  14. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)

    Google Scholar 

  15. Chen, W., Wang, Z., Xie, H., Yu, W.: Characterization of surface emg signal based on fuzzy entropy. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15, 266–272 (2007)

    Article  Google Scholar 

  16. Liu, C., Li, K., Zhao, L., Liu, F., Zheng, D., Liu, C., Liu, S.: Analysis of heart rate variability using fuzzy measure entropy. Comput. Biol. Med. 43, 100–108 (2013)

    Article  Google Scholar 

  17. Mayer, C., Bachler, M., Hörtenhuber, M., Stocker, C., Holzinger, A., Wassertheurer, S.: Selection of entropy-measure parameters for knowledge discovery in heart rate variability data (in press)

    Google Scholar 

  18. Sethuraman, G., Ryan, K.L., Rickards, C.A., Convertino, V.A.: Ectopy in trauma patients: cautions for use of heart period variability in medical monitoring. Aviation, Space, and Environmental Medicine 81, 125–129 (2010)

    Article  Google Scholar 

  19. Mateo, J., Laguna, P.: Analysis of heart rate variability in the presence of ectopic beats using the heart timing signal. IEEE Transactions on Biomedical Engineering 50, 334–343 (2003)

    Article  Google Scholar 

  20. Beckers, F., Verheyden, B., Aubert, A.E.: Aging and nonlinear heart rate control in a healthy population. American Journal of Physiology-Heart and Circulatory Physiology 290, H2560–H2570 (2006)

    Google Scholar 

  21. Mäkikallio, T.H., Seppännen, T., Niemelä, M., Airaksinen, K.J., Tulppo, M., Huikuri, H.V.: Abnormalities in beat to beat complexity of heart rate dynamics in patients with a previous myocardial infarction1. Journal of the American College of Cardiology 28, 1005–1011 (1996)

    Article  Google Scholar 

  22. Teo, K., Yusuf, S., Furberg, C.: Effects of prophylactic antiarrhythmic drug therapy in acute myocardial infarction: An overview of results from randomized controlled trials. JAMA 270, 1589–1595 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bachler, M., Hörtenhuber, M., Mayer, C., Holzinger, A., Wassertheurer, S. (2014). Entropy-Based Data Mining on the Example of Cardiac Arrhythmia Suppression. In: Ślȩzak, D., Tan, AH., Peters, J.F., Schwabe, L. (eds) Brain Informatics and Health. BIH 2014. Lecture Notes in Computer Science(), vol 8609. Springer, Cham. https://doi.org/10.1007/978-3-319-09891-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09891-3_52

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09890-6

  • Online ISBN: 978-3-319-09891-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics