Skip to main content

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 23))

Abstract

Plant somatic embryogenesis is the ability of somatic and/or gametophytic cells to produce embryos capable of regenerating into viable plants. The expression of embryonic competence is manifested following precise manipulations of culture conditions often requiring applications of plant growth regulators and the imposition of stress conditions in the form of heat and/or cold treatments. Reactive oxygen species (ROS) are considered ubiquitous endogenous signals in plant systems, playing significant roles in a wide range of responses to environmental and endogenous factors. Accumulating evidence indicates that somatic embryogenesis is influenced by ROS. Although still partially unknown, the mechanisms underlying the cross talk between ROS and somatic embryogenesis have been investigated in a number of plant species. The focus of this chapter is to summarize information related to the role of ROS homeostasis and signalling on the induction and development of in vitro-produced embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akula A, Akula C, Bateson M (2000) Betaine a novel candidate for rapid induction of somatic embryogenesis in tea (Camellia sinensis (L.) O. Kuntze). Plant Growth Regul 30:241–246

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Apostol I, Heinstein PF, Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiol 90:109–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    Article  CAS  PubMed  Google Scholar 

  • Belmonte MF, Donald G, Reid DM, Yeung EC, Stasolla C (2005) Alterations of the glutathione redox state improve apical meristem structure and somatic embryo quality in white spruce (Picea glauca). J Exp Bot 56:2355–2364

    Article  CAS  PubMed  Google Scholar 

  • Belmonte MF, Ambrose SJ, Ross ARS, Abrams S, Stasolla C (2006) Improved development of microspore-derived embryo cultures of B. napus cv Topas following changes in glutathione metabolism. Physiol Plant 127:690–700

    Article  CAS  Google Scholar 

  • Bozhkov PV, Filonova LH, Suarez MF (2005) Programmed cell death in plant embryogenesis. Curr Top Dev Biol 67:135–179

    Article  CAS  PubMed  Google Scholar 

  • Canhoto JM, Cruz GS (1994) Improvement of somatic embryogenesis in Feijoa sellowiana berg (Myrtaceae) by manipulation of culture media composition. In Vitro Cell Dev Biol Plant 30:21–25

    Article  Google Scholar 

  • Carimi F, Zottini M, Costa A, Cattelan I, De Michele R, Terzi M, Lo Schiavo F (2005) NO signalling in cytokinin-induced programmed cell death. Plant Cell Environ 28:1171–1178

    Article  CAS  Google Scholar 

  • Cerrutti L, Mian N, Bateman A (2000) Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the PIWI domain. Trends Biochem Sci 25:481–482

    Article  Google Scholar 

  • Chung H-H, Chen J-T, Chang W-C (2005) Cytokinins induce direc somatic embryogenesis of Dendrobium chiengmai pink and subsequent plant regeneration. In Vitro Cell Dev Biol Plant 41:765–769

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci CMLS 57:779–795

    Article  CAS  Google Scholar 

  • Dat JF, Pellinen R, Van De Cotte B, Langebartels C, Kangasjärvi J, Inzé D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    Article  CAS  PubMed  Google Scholar 

  • De Gara L, Tommasi F (1999) Ascorbate redox enzymes: a network of reactions involved in plant development. Recent Res Dev Phytochem 3:1–5

    Google Scholar 

  • de Pinto M, Francis D, De Gara L (1999) The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma 209:90–97

    Article  PubMed  Google Scholar 

  • Doke N, Miura Y, Chai H-B, Kawakita K (1991) Involvement of active oxygen in induction of plant defense response against infection and injury. Curr Topics Plant Physiol 6:25–31

    Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dudits D, Györgyey J, Bögre L, Bakó L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 267–308

    Chapter  Google Scholar 

  • Earnshaw BA, Johnson MA (1985) The effect of glutathione on development of white carrot suspension cultures. Biochem Biophys Res Commun 133:988–993

    Article  CAS  PubMed  Google Scholar 

  • Elhiti M, Stasolla C (2011) The use of zygotic embryos as explants for in vitro propagation: an overview. In: Thorpe TA, Yeung EC (eds) Plant embryo culture. Springer, Dordrecht, pp 229–255

    Chapter  Google Scholar 

  • Elhiti M, Tahir M, Gulden RH, Khamiss K, Stasolla C (2010) Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot 61:4069–4085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elhiti M, Hebelstrup KH, Wang A, Li C, Cui Y, Hill RD, Stasolla C (2013) Function of type-2 Arabidopsis hemoglobin in the auxin‐mediated formation of embryogenic cells during morphogenesis. Plant J 946:58–62

    Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Org Cult 74:201–228

    Article  CAS  Google Scholar 

  • Fehér A, Ötvös K, Pasternak TP, Pettkó-Szandtner A (2008) The involvement of reactive oxygen species (ROS) in the cell cycle activation (G0-to-G1 transition) of plant cells. Plant Signal Behav 3:823–826

    Article  PubMed Central  PubMed  Google Scholar 

  • Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, von Arnold S (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411

    CAS  PubMed  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Henmi K, Tsuboi S, Demura T, Fukuda H, Iwabuchi M, Ki O (2001) A possible role of glutathione and glutathione disulfide in tracheary element differentiation in the cultured mesophyll cells of Zinnia elegans. Plant Cell Physiol 42:673–676

    Article  CAS  PubMed  Google Scholar 

  • Heringer AS, Vale EM, Barroso T, Santa-Catarina C, Silveira V (2013) Polyethylene glycol effects on somatic embryogenesis of papaya hybrid UENF/CALIMAN 01 seeds. Theor Exp Plant Physiol 25:116–124

    Article  CAS  Google Scholar 

  • Huang S, Hill R, Wally OS, Dionisio G, Ayele B, Stasolla C (2014) Hemoglobin control of cell survival/death decision regulates in vitro plant embryogenesis. Plant Physiol. doi:10.1104/pp.114.239335

    Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Article  CAS  PubMed  Google Scholar 

  • Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21:83–86

    Article  CAS  PubMed  Google Scholar 

  • Kairong C, Gengsheng X, Xinmin L, Gengmei X, Yafu W (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146:9–16

    Article  Google Scholar 

  • Kerk NM, Feldman LJ (1995) A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristem. Development 121:2825–2833

    CAS  Google Scholar 

  • Kiyosue T, Takano K, Kamada H, Harada H (1990) Induction of somatic embryogenesis in carrot by heavy metal ions. Can J Bot 68:2301–2303

    Article  CAS  Google Scholar 

  • Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kreslavski V, Los D, Allakhverdiev S, Kuznetsov VV (2012) Signaling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59:141–154

    Article  CAS  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C-Y, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    Article  CAS  PubMed  Google Scholar 

  • Kuo H-L, Chen J-T, Chang W-C (2005) Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis ‘Little Steve’. In Vitro Cell Dev Biol Plant 41:453–456

    Article  Google Scholar 

  • Ladyman JA, Girard B (1992) Cucumber somatic embryo development on various gelling agents and carbohydrate sources. Hortic Sci 27:164–165

    Google Scholar 

  • Laux T, Mayer KFX, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    CAS  PubMed  Google Scholar 

  • Lin Y-L, Lai Z-X (2013) Superoxide dismutase multigene family in longan somatic embryos: a comparison of CuZn-SOD, Fe-SOD, and Mn-SOD gene structure, splicing, phylogeny, and expression. Mol Breed 32:595–615

    Article  CAS  Google Scholar 

  • Liu X, Williams CE, Nemacheck JA, Wang H, Subramanyam S, Zheng C, Chen M-S (2010) Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol 152:985–999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lohrmann J, Harter K (2002) Plant two-component signaling systems and the role of response regulators. Plant Physiol 128:363–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malabadi RB, Van Staden J (2005) Somatic embryogenesis from vegetative shoot apices of mature trees of Pinus patula. Tree Physiol 25:11–16

    Article  PubMed  Google Scholar 

  • Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang X-D, Vanden Bosch KA, Rose RJ (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146:1622–1636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maraschin SF, De Priester W, Spaink HP, Wang M (2005) Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective. J Exp Bot 56:1711–1726

    Article  CAS  PubMed  Google Scholar 

  • Marre E, Arrigoni O (1957) Metabolic reactions to auxin. I. The effects of auxin on glutathione and the effects of glutathione on growth of isolated plant parts. Physiol Plant 10:289–301

    Article  CAS  Google Scholar 

  • Miller CO (1980) Cytokinin inhibition of respiration in mitochondria from six plant species. Proc Natl Acad Sci USA 77:4731–4735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller G, Suzuki N, Cifci‐Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mizogushi T, Gotoh Y, Nishida E, Yamagushi-Shinozaki K, Hayashida N, Iwasaki T, Kamada H, Shinozaki K (1994) Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis and analysis of the possible rol of auxin in activating such kinase activities in cultured cells. Plant J 5:111–122

    Article  Google Scholar 

  • Mlejnek P (2013) Cytokinin-induced cell death is associated with elevated expression of alternative oxidase in tobacco BY-2 cells. Protoplasma 250:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Mockaitis K, Howell SH (2000) Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J 24:785–796

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    CAS  Google Scholar 

  • Nogler GA (1984) Genetics of apospory in apomictic Ranunculus auricomus. V Conclusion Bot Helv 94:411–422

    Google Scholar 

  • Nolan KE, Saeed NA, Rose RJ (2006) The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis. Plant Cell Rep 25:711–722

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    Article  PubMed Central  PubMed  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H, Van Onckelen HA, Dudits D, Fehér A (2002) The role of auxin, pH, and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patnaik D, Mahalakshmi A, Khurana P (2005) Effect of water stress and heavy metals on induction of somatic embryogenesis in wheat leaf base cultures. Indian J Exp Biol 43:740–743

    CAS  PubMed  Google Scholar 

  • Potters G, De Gara L, Asard H, Horemans N (2002) Ascorbate and glutathione: guardians of the cell cycle, pattern in crime? Plant Physiol Biochem 40:537–548

    Article  CAS  Google Scholar 

  • Quinn J, Findlay VJ, Dawson K, Millar JB, Jones N, Morgan BA, Toone WM (2002) Distinct regulatory proteins control the graded transcriptional response to increasing H2O2 levels in fission yeast Schizosaccharomyces pombe. Mol Biol Cell 13:805–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raghavan V (2000) Pattern formation in angiosperm embryos. Botanica 50:33–47

    Google Scholar 

  • Raghavan C, Ong EK, Dalling MJ, Stevenson TW (2006) Regulation of genes associated with auxin, ethylene and ABA pathways by 2, 4-dichlorophenoxyacetic acid in Arabidopsis. Funct Integr Genomics 6:60–70

    Article  CAS  PubMed  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  CAS  PubMed  Google Scholar 

  • Rose RJ, Nolan KE (2006) Genetic regulation of somatic embryogenesis with particular reference to Arabidopsis thaliana and Medicago truncatula. In Vitro Cell Dev Biol Plant 42:473–481

    Article  CAS  Google Scholar 

  • Rose RJ, Mantiri FR, Kurdyukov S, Chen S-K, Wang X-D, Nolan KE, Sheahan MB (2010) Developmental biology of somatic embryogenesis. In: Pua EC, Davey MR (eds) Plant developmental biology—biotechnological perspectives. Springer, Berlin, pp 3–26

    Chapter  Google Scholar 

  • Sagare A, Lee Y, Lin T, Chen C, Tsay H (2000) Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo: a medicinal plant. Plant Sci 160:139–147

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto M, Munemura I, Tomita R, Kobayashi K (2008) Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J 56:13–27

    Article  CAS  PubMed  Google Scholar 

  • Shibata MA, Fukushima S, Asakawa E, Hirose M, Ito N (1992) The modifying effects of indomethacin or ascorbic acid on cell proliferation induced by different types of bladder tumor promoters in rat urinary bladder and forestomach mucosal epithelium. Jpn J Cancer Res 83:31–39

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C (2010a) Changes in the glutathione and ascorbate redox state trigger growth during embryo development and meristem reactivation at germination. In: Naser A. Anjun, Ming-Tsair Chan, Shahid Umar (eds) Ascorbate-Glutathione Pathway and Stress Tolerance in Plants. Springer, pp 231–249

    Google Scholar 

  • Stasolla C (2010b) Glutathione redox regulation of in vitro embryogenesis. Plant Physiol Biochem 48:319–327

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C, Yeung EC (2001) Ascorbic acid metabolism during white spruce somatic embryo maturation and germination. Physiol Plant 111:196–205

    Article  CAS  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Org Cult 74:15–35

    Article  CAS  Google Scholar 

  • Stasolla C, Yeung EC (2007) Cellular ascorbic acid regulates the activity of major peroxidases in the apical poles of germinating white spruce (Picea glauca) somatic embryos. Plant Physiol Biochem 45:188–198

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C, Bozhkov PV, Chu T-M, van Zyl L, Egertsdotter U, Suarez MF, Craig D, Wolfinger RD, Von Arnold S, Sederoff RR (2004) Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiol 24:1073–1085

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C, Belmonte MF, Tahir M, Elhiti M, Khamiss K, Joosen R, Maliepaard C, Sharpe A, Gjetvaj B, Boutilier K (2008) Buthionine sulfoximine (BSO)-mediated improvement in cultured embryo quality in vitro entails changes in ascorbate metabolism, meristem development and embryo maturation. Planta 228:255–272

    Article  CAS  PubMed  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Sagara Y, Liu Y, Maher P, Schubert D (1998) The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141:1423–1432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thair M, Stasolla C (2005) Shoot apical development during in vitro embryogenesis. Can J Bot 84:1650–1659

    Article  Google Scholar 

  • To JP, Kieber JJ (2008) Cytokinin signaling: two-components and more. Trends Plant Sci 13:85–92

    Article  CAS  PubMed  Google Scholar 

  • Vranová E, Atichartpongkul S, Villarroel R, Van Montagu M, Inzé D, Van Camp W (2002a) Comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proc Natl Acad Sci USA 99:10870–10875

    Article  PubMed Central  PubMed  Google Scholar 

  • Vranová E, Inzé D, Van Breusegem F (2002b) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  PubMed  Google Scholar 

  • Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE (1998) The two-component regulators GacS and GacA influence accumulation of the stationary-phase Sigma Factor and the stress response in Pseudomonas fluorescens Pf-5. J Bacteriol 180:6635–6641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeung EC (2002) The canola microspore-derived embryo as a model system to study developmental processes in plants. J Plant Biol 45:119–133

    Article  Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol 13:12–13

    Article  Google Scholar 

  • Zhang Y, Aizenman E, DeFranco DB, Rosenberg PA (2007) Intracellular zinc release, 12-lipoxygenase activation and MAPK dependent neuronal and oligodendroglial death. Mol Med 13:350–355

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Stasolla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elhiti, M., Stasolla, C. (2015). ROS Signalling in Plant Embryogenesis. In: Gupta, K., Igamberdiev, A. (eds) Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants. Signaling and Communication in Plants, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-10079-1_10

Download citation

Publish with us

Policies and ethics