Skip to main content

Delay-Dependent Partial Order Reduction Technique for Time Petri Nets

  • Conference paper
Formal Modeling and Analysis of Timed Systems (FORMATS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8711))

Abstract

Partial order reduction techniques aim at coping with the state explosion problem by reducing, while preserving the properties of interest, the number of transitions to be fired from each state of the model. For (time) Petri nets, the selection of these transitions is, generally, based on the structure of the (underlying) Petri net and its current marking. This paper proposes a partial order reduction technique for time Petri nets (TPN in short), where the selection procedure takes into account the structure, including the firing intervals, and the current state (i.e., the current marking and the firing delays of the enabled transitions). We show that our technique preserves non-equivalent firing sequences of the TPN. Therefore, its extension to deal with LTL − X properties is straightforward, using the well established methods based on the stuttering equivalent sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belluomini, W., Myers, C.J.: Timed state space exploration using POSETs. IEEE Transactions on Computer-Aided Design of Integrated Circuits 19(5), 501–520 (2000)

    Google Scholar 

  2. Bengtsson, J.: Clocks, DBMs and States in Timed Systems. PhD thesis, Dept. of Information Technology, Uppsala University (2002)

    Google Scholar 

  3. Bengtsson, J.E., Jonsson, B., Lilius, J., Yi, W.: Partial order reductions for timed systems. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 485–500. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: The expressive power of time Petri nets. Theoretical Computer Science 474, 1–20 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of time Petri nets. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 442–457. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Boucheneb, H., Barkaoui, K.: Reducing interleaving semantics redundancy in reachability analysis of time Petri nets. ACM Transactions on Embedded Computing Systems (TECS) 12(1), 259–273 (2013)

    Article  Google Scholar 

  7. Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets. Logic and Computation 19(6), 1509–1540 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boucheneb, H., Hadjidj, R.: CTL* model checking for time Petri nets. Theoretical Computer Science TCS 353(1-3), 208–227 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Boucheneb, H., Lime, D., Roux, O.H.: On multi-enabledness in time Petri nets. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 130–149. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Boucheneb, H., Rakkay, H.: A more efficient time Petri net state space abstraction useful to model checking timed linear properties. Fundamenta Informaticae 88(4), 469–495 (2008)

    MATH  MathSciNet  Google Scholar 

  11. Boyer, M., Diaz, M.: Multiple-enabledness of transitions in time Petri nets. In: 9th IEEE International Workshop on Petri Nets and Performance Models, pp. 219–228 (2001)

    Google Scholar 

  12. Chatain, T., Jard, C.: Complete finite prefixes of symbolic unfoldings of safe time Petri nets. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 125–145. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Delfieu, D., Sogbohossou, M., Traonouez, L.M., Revol, S.: Parameterized study of a time Petri net. In: Cybernetics and Information Technologies, Systems and Applications: CITSA, pp. 89–90 (2007)

    Google Scholar 

  14. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS, vol. 1032, pp. 1–142. Springer, Heidelberg (1996)

    Google Scholar 

  15. Håkansson, J., Pettersson, P.: Partial order reduction for verification of real-time components. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 211–226. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Lilius, J.: Efficient state space search for time Petri nets. In: MFCS Workshop on Concurrency Algorithms and Tools. ENTCS, vol. 8, pp. 113–133 (1998)

    Google Scholar 

  17. Lugiez, D., Niebert, P., Zennou, S.: A partial order semantics approach to the clock explosion problem of timed automata. Theoretical Computer Science TCS 345(1), 27–59 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Minea, M.: Partial order reduction for model checking of timed automata. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 431–446. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  19. Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  20. Peled, D., Wilke, T.: Stutter invariant temporal properties are expressible without the next-time operator. Information Processing Letters 63(5), 243–246 (1997)

    Article  MathSciNet  Google Scholar 

  21. Romulo, F., Raimundo, B., Paulo, M.: Analysis of real-time scheduling problems by single step and maximal step semantics for time petri net models. In: 3rd Brazilian Symposium on Computing Systems Engineering (SBESC), pp. 107–112 (2013)

    Google Scholar 

  22. Salah, R.B., Bozga, M., Maler, O.: On interleaving in timed automata. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 465–476. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Semenov, A., Yakovlev, A.: Verification of asynchronous circuits using time Petri net unfolding. In: 33rd Annual Conference on Design Automation (DAC), pp. 59–62 (1996)

    Google Scholar 

  24. Valmari, A., Hansen, H.: Can stubborn sets be optimal? In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 43–62. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Yoneda, T., Ryuba, H.: CTL model checking of time Petri nets using geometric regions. EICE Trans. Inf. & Syst. E-99D(3), 297–306 (1998)

    Google Scholar 

  26. Yoneda, T., Schlingloff, B.H.: Efficient verification of parallel real-time systems. Formal Methods in System Design 11(2), 187–215 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Boucheneb, H., Barkaoui, K., Weslati, K. (2014). Delay-Dependent Partial Order Reduction Technique for Time Petri Nets. In: Legay, A., Bozga, M. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2014. Lecture Notes in Computer Science, vol 8711. Springer, Cham. https://doi.org/10.1007/978-3-319-10512-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10512-3_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10511-6

  • Online ISBN: 978-3-319-10512-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics