Skip to main content

Factors Influencing the Toxicity, Detoxification and Biotransformation of Paralytic Shellfish Toxins

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 235

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 235))

Abstract

The incidence of red tide events globally has escalated in marine coastal environments over the last several decades (Cordier et al. 2000). The term red tide is used to describe a phenomenon in which a water body exhibits red coloration from the presence of high algal cell density. Red tide events are often harmful to both human and aquatic organisms. However, the term may be confusing, because red tide refers not only to the high density of microscopic algal cells that colorize water, but also includes blooms of highly toxic cells that can cause problems even at low cell densities, i.e., a few hundred cells L−1. Therefore, the term Harmful Algal Blooms (HABs) has been introduced to describe blooms of both toxic and non-toxic algae that potentially have negative effects on humans and the environment (Anderson 2009). The reported global incidence of paralytic shellfish poisoning (PSP) that has been associated with HABs has been increasing annually (Anderson 1989). However, it is still unclear whether the increase results from elevated public awareness and reporting of HABs, or from an increase in anthropogenic factors, like increasing marine pollution incidents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acres J, Gray J (1978) Paralytic shellfish poisoning. Can Med Assoc J 119:1195–1197

    CAS  Google Scholar 

  • Al-Azad S, Tan KS, Ransangan J (2013) Effects of light intensities and photoperiods on growth and proteolytic activity in purple non-sulfur marine bacterium, Afifella marina strain ME (KC205142). Adv Biosci Biotechnol 4:919–924

    Google Scholar 

  • Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manag 52:342

    Google Scholar 

  • Anderson DM (1989) Toxic algal blooms and red tides: a global perspective. In: Okaido AT, Anderson DM, Nemoto T (eds) Red tides: biology environmental science and toxicology. Elsevier, New York, NY, pp 11–16

    Google Scholar 

  • Anderson DM, Kulis DM, Sullivan JJ, Hall S (1990) Toxin composition variations in one isolate of the dinoflagellate Alexandrium fundyense. Toxicon 28:885–893

    CAS  Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726

    Google Scholar 

  • Anton A, Alexander J, Estim A (2000) Harmful algal blooms in Malaysia: revisiting Kimanis Bay. In: 9th International Conference on Toxic Phytoplankton, Tasmania (Abstract)

    Google Scholar 

  • AOAC International (1995) Paralytic shellfish poison. Biological method. Chapter 35. In: Williams S (ed) Official methods of analysis, 14th edn. Association of Official Analytical Chemists International, Arlington, VA, pp 21–22

    Google Scholar 

  • Aune T, Ramstad H, Heidenreich B, Landsverk T, Waaler T, Egaas E, Julshamn K (1998) Zinc accumulation in oysters giving mouse deaths in paralytic shellfish poisoning bioassay. J Shellfish Res 17:1243–1246

    Google Scholar 

  • Aune T, Aasen JAB, Miles CO, Larsen S (2008) Effect of mouse strain and gender on LD50 of yessotoxin. Toxicon 52:535–540

    CAS  Google Scholar 

  • Baden DG, Trainer VL (1993) Mode of action of saxitoxins of seafood poisoning. In: Falconer I (ed) Algal toxin in seafood and drinking water. Academic, London, pp 49–74

    Google Scholar 

  • Beitler MK, Liston J (1990) Uptake and tissue distribution od PSP toxin in butter clams. In: Graneli E, Sindstrom B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier Science Publications, Amsterdam, pp 257–263

    Google Scholar 

  • Benavides H, Prado L, Díaz S, Carreto JI (1995) An exceptional bloom of Alexandrium catenella in the Beagle Channel, Argentina. In: Lassus P, Arzul G, Erard-Le Denn E, Gentien P, Marcaillou-Le Baut C (eds) Harmful marine algal blooms. Lavoisier Publishers, Paris, pp 113–119

    Google Scholar 

  • Bricelj VM, Lee JH, Cembella AD, Anderson DM (1990) Uptake kinetics of paralytic shellfish toxins from the dinoflagellate Alexandrium fundyense in the mussel Mytilus edulis. Mar Ecol Prog Ser 63:177–188

    CAS  Google Scholar 

  • Bricelj VM, Lee JH, Cembella AD (1991) Influence of dinoflagellate cell toxicity on uptake and loss of paralytic shellfish toxins in the northern quahog, Mercenaria mercenaria. Mar Ecol Prog Ser 74:33–46

    CAS  Google Scholar 

  • Bricelj VM, Cembella AD (1995) Fate of gonyautoxins accumulated in surfclams, Spisula solidissima, grazing upon PSP toxin-producing Alexandrium. In: Lassus P, Arzul G, Erard E, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Lavoisier Science Publishers, Paris

    Google Scholar 

  • Bricelj VM, Cembella AD, Laby D, Shumway SE, Cucci TL (1996) Comparative physiological and behavioral responses to PSP toxins in two bivalve molluscs, the softshell clam, Mya arenaria, and surfclam, Spisula solidissima. In: Yasumoto T, Oshima Y, Fukuyo Y (eds) Harmful and toxic algal blooms. Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 405–408

    Google Scholar 

  • Bricelj VM, Shumway SE (1998) Paralytic shellfish toxins in bivalve molluscs: occurrence, transfer kinetics and biotransformation. Rev Fisher Sci 6(4):315–383

    CAS  Google Scholar 

  • Brivelj VM, Connell L, Konoki K, Macquarrie SP, Scheuer T, Catteral WA, Trainer VL (2005) Sodium channel mutation leading to saxitoxin resistance in clams increases risk of PSP. Nature 434:764–767

    Google Scholar 

  • Buckley LJ, Oshima T, Shimizu Y (1978) Construction of a paralytic shellfish toxin analyzer and its application. Anal Biochem 85:157–164

    CAS  Google Scholar 

  • Carreto JI, Benavides HR, Negri RM, Glorioso PD (1986) Toxic red-tide in the Argentine Sea. Phytoplankton distribution and survival of the toxic dinoflagellate Gonyaulax excavata in a frontal area. J Plankton Res 8:15–28

    Google Scholar 

  • CEN (2002) EN 14194. Foodstuffs - determination of saxitoxin and desaxitoxin in mussels - HPLC method using post-column derivatization with peroxide or periodate oxidation. European Committee for Standardization (CEN).

    Google Scholar 

  • Cestele S, Catterall WA (2000) Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochemistry 82:883–892

    CAS  Google Scholar 

  • Chen CY, Chou HN (2001) Accumulation and depuration of paralytic shellfish toxins by purple clam Hiatula rostrata. Light Tools Toxicon 39:1029–1034

    CAS  Google Scholar 

  • Choi MC, Hsieh DPH, Lam PKS, Wang WX (2003) Field depuration and biotransformation of paralytic shellfish toxins in scallop Chlamys nobilis and green- lipped mussel Perna viridis. Mar Biol 143:927–934

    CAS  Google Scholar 

  • Chou HN, Huang CP, Chen CY (2005) Accumulation and depuration of paralytic shellfish poisoning toxins by laboratory cultured purple clam Hiatula diphos Linnaeus. Toxicon 46:587–590

    CAS  Google Scholar 

  • Ciminiello P, Fattorusso E, Forino M, Montresor M (2000) Saxitoxin and neosaxitoxin as toxic principles of Alexandrium Anderson (Dinophyceae) from the Gulf of Naples, Italy. Toxicon 38:1871–1877

    CAS  Google Scholar 

  • Cordier S, Monfort C, Miossec L, Richardson S, Belin C (2000) Ecological analysis of digestive cancer mortality related to contamination by diarrhetic shellfish poisoning toxins along the coast of France. Environ Res 84:145–150

    CAS  Google Scholar 

  • Dahl E, Tangen K (1993) 25 years experience with Gyrodinium aureolum in Norwegian waters. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, New York, NY, pp 15–21

    Google Scholar 

  • Daigo K, Noguchi P, Miwa A, Kawai N, Hasimoto K (1988) Resistance of nerves from certain toxic crabs to paralytic shellfish poison and tetrodotoxin. Toxicon 26:485–490

    CAS  Google Scholar 

  • Davio SR, Fontelo PAA (1984) Competitive displacement assay to detect saxitoxin and tetrodotoxin. Anal Biochem 141:199–204

    CAS  Google Scholar 

  • Deeds J, Landsberg J, Etheridge S, Pitcher G, Longan S (2008) Non-traditional vectors for paralytic shellfish poisoning. Mar Drugs 6:308–348

    CAS  Google Scholar 

  • Dell’Aversano C, Walter JA, Burton IW, Stirling DJ, Fattorusso E, Quilliam MA (2008) Isolation and structure elucidation of new and unusual saxitoxin analogues from mussels. J Nat Prod 71:1518–1523

    Google Scholar 

  • Deyoe HR, Sutrle CA (1994) The inability of the Texas “brown tide” alga to use nitrate and the role of nitrogen in the initiation of a persistent Moom of tiffs organism. J Physiol 7(30):800–806

    Google Scholar 

  • Donovan CJ, Ku JC, Quiliam MA, Gill TA (2008) Bacterial degradation of paralytic shellfish toxins. Toxicon 52:91–100

    CAS  Google Scholar 

  • Donovan CJ, Garduno RA, Kalmokoff M, Ku JC, Quilliam MA, Gill TA (2009) Pseudoalteromonas bacteria are capable of degrading paralytic shellfish toxins. Appl Environ Microbiol 75:6919–6923

    CAS  Google Scholar 

  • Doucette GJ, Logan MM, Ramsdell JS, van Dolah FM (1997) Development and preliminary validation of a microtiter plate-based receptor binding assay for paralytic shellfish poisoning toxins. Toxicon 35:625–636

    CAS  Google Scholar 

  • Fast MD, Cembella AD, Ross NW (2006) In vitro transformation of paralytic shellfish toxins in the clams Mya arenaria and Protothaca staminea. Harmful Algae 5:79–90

    CAS  Google Scholar 

  • Franco J, Fernandez P, Reguera B (1994) Toxin profiles of natural populations and cultures of Alexandrium minitum Halim from Galician (Spain) coastal waters. J Appl Phycol 6:275–279

    CAS  Google Scholar 

  • Gacutan RQ, Tabbu MY, de Castro T, Gallego AB, Arafiles MB, Icatlo F (1989) Detoxification of Pyrodinium generated paralytic shellfish poisoning toxin in Perna viridis from western Samar, Philippines. In: Hallegraeff GM, Maclean JL (eds), Biology, epidemiology and management of Pyrodinium red tides. JCLARM conference proceeding 21. Manila, Philippines, pp 80–85.

    Google Scholar 

  • Gainey LF Jr, Shumway SE (1988) A compendium of the responses of bivalve molluscs to toxic dinoflagellates. J Shellfish Res 7(4):623–628

    Google Scholar 

  • Garate-Lizarraga I, Bustillos-Guzman JJ, Morquecho L, Band-Schmidt CJ, Alonso-Rodriguez R, Erler K, Luckas B, Reyes-Salinas A, Gongora-Gonzalez DT (2005) Comparative paralytic shellfish poisoning profiles in the strains of Gymnodinium catenatum Graham from the Gulf of California, Mexico. Mar Pollut Bull 50:211–217

    CAS  Google Scholar 

  • Glasgow HB, Burkholder JM, Mallin MA, Dreamer-Melia NJ, Reed RE (2001) Field ecology of toxic Pfiesteria complex species, and a conservative analysis of their role in estuarine fish kills. Environ Health Perspect 109:715–730

    CAS  Google Scholar 

  • Glibert PM, Magnien R, Lomas MW, Alexander J, Fan C, Haramoro E, Trice M, Kana TM (2001) Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: comparison of 1997, 1998, and 1999 events. Estuaries 24:875–883

    CAS  Google Scholar 

  • Graneli E, Carlsson P (1998) The ecological significance of phagoix-ophy in photosynthetic flagellates. In: Anderson DM, Cerebella AD, HallegTaeff GM (eds) Physiological ecology of harmful algal blooms. Springer, Berlin, Germany, pp 540–557

    Google Scholar 

  • Grzebyk D, Bechemin C, Ward CJ, Verite C, Codd GA, Maestrini SY (2003) Effects of salinity and two coastal waters on the growth and toxin content of the dinoflagellate Alexandrium minitum. J Plankton Res 25:1185–1199

    CAS  Google Scholar 

  • Hamasaki K, Horie M, Tokimitsu S, Toda T, Taguchi S (2001) Variability in toxicity of the dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, western Japan, as a reflection of changing environmental conditions. J Plankton Res 23:271–278

    CAS  Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms in the Australian region. Mar Pollut Bull 25:186–190

    Google Scholar 

  • Hansen PJ, Cembella AD, Moestrup O (1992) The marine dinoflagellate Alexandrium ostenfeldii: paralytic shellfish toxin concentration, composition and toxicity to a tintinid ciliate. J Phycol 28:597–603

    CAS  Google Scholar 

  • Hodgkiss IJ, Ho KC (1997) Are changes in N:P ratios in coastal waters the key to increased red tide blooms. Hydrobiologia 352:141–147

    Google Scholar 

  • Holmes MJ, Bolch CJS, Green DH, Cembella AD, Teo SLM (2002) Singapore isolates of dinoflagellate Gymnodinium catenatum (Dinophyceae) produce a unique profile of paralytic shellfish poisoning toxins. J Phycol 38:96–106

    Google Scholar 

  • Humpage AR, Magalhaes VF, Froscio SM (2010) Comparison of analytical tools and biological assays for detection of paralytic shellfish poisoning toxins. Anal Bioanal Chem 397:1655–1671

    Google Scholar 

  • Hurst JW, Gilfillan ES (1997) Paralytic shellfish poisoning in Maine. In: Wilt ES (ed) Tenth Natl shellfish sanitation workshop. U.S. Dept. Health, Education and Welfare, Food and Drug Administration, Washington, DC, pp 152–161

    Google Scholar 

  • Hwang DF, Lu YH, Noguchi T (2003) Effects of exogenous polyamines on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. J Food Hygien Soc Jpn 44:49–53

    CAS  Google Scholar 

  • Hwang DR, Lu YH (2000) Influence of environmental and nutritional factors on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minitum. Toxicon 38:1491–1503

    CAS  Google Scholar 

  • Ichimi K, Suzuki T, Ito A (2002) Variety of PSP toxin profile in various culture strains of Alexandrium tamarense and change of toxin profile in natural A. tamarense population. J Exp Mar Biol Ecol 273:51–60

    CAS  Google Scholar 

  • Inami GB, Crandall C, Csuti D, Oshiro M, Brenden RA (2004) Feasibility of reduction in use of mouse bioassay: presence/absence screening for saxitoxin in frozen acidified mussel and oyster extracts from the coast of California with in vitro methods. J AOAC Int 87(5):1133–1142

    CAS  Google Scholar 

  • Jacobson DM, Anderson DM (1996) Widespread phagocytosis of dilates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J Phycol 82:279–285

    Google Scholar 

  • Jaime E, Gerdts G, Luckas B (2007) In vitro transformation of PSP toxins by different shellfish tissues. Harmful Algae 6:308–316

    CAS  Google Scholar 

  • Jellett JF, Marks LJ, Stewart JE, Dorey MI, Watson-Wright W, Lawrence JF (1992) Paralytic shellfish poisoning (saxitoxin family) bioassays: automated endpoint determination and standardization of the in vitro tissue culture bioassay, and comparison with the standard mouse bioassay. Toxicon 30:1143–1156

    CAS  Google Scholar 

  • Jellett JF, Doucette LI, Belland ER (1998) The MIST ™ shippable cell bioassay kids for PSP: an alternative to the mouse bioassay. J Shellfish Res 17:1653–1655

    Google Scholar 

  • Johansson N, Graneli E (1999) Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios. Mar Biol 135:209–217

    CAS  Google Scholar 

  • Johansson N, Graneli E, Yasumoto T, Carlsson P, Legrand C (1996) Toxin production by Dinophysis acuminata and D. acuta cells grown under nutrient sufficient and deficient conditions. In: Yasumoto T, Oshima Y, Fukuyo Y (eds) Harmful and toxic algal blooms. Scientific and Cultural Organization, Intergovernmental Oceanographic Commission of United Nations Educational, Paris, France, pp 227–280

    Google Scholar 

  • Jones GJ, Bourne DG, Blakeley RL, Doelle H (1994) Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Nat Toxins 2:228–235

    CAS  Google Scholar 

  • Kao CY (1993) Paralytic shellfish poisoning. Algal toxins in seafood and drinking water. Academic, London, pp 75–86

    Google Scholar 

  • Kodama M (1990) Possible link between bacteria and toxin production in algal blooms. In: Granelii EP, Sundstrom B, Edler L, Anderson DN (eds) Toxic marine phytoplankton. Elsevier, New York, NY, pp 52–61

    Google Scholar 

  • Kodama M (2000) Ecobiology, classification, and origin. In: Botana LM (ed) Seafood and freshwater toxins - pharmacology, physiology, and detection. Marcel Dekker, New York, NY, pp 125–149

    Google Scholar 

  • Kotaki Y, Oshima Y, Yasumoto T (1985) Bacterial transformation of paralytic shellfish toxins in coral reef crabs and marine snail. Nippon Suisan Gakkashi 51:1009–1013

    CAS  Google Scholar 

  • Kotaki Y (1989) Screening of bacteria which convert gonyautoxin 2, 3 to saxitoxin. Nippon Suisan Gakkashi 55:1293

    Google Scholar 

  • Krock B, Seguel CG, Gembella AD (2007) Toxin profile of Alexandrium catenella from the Chilean coast as determined by liquid chromatography with fluorescence detection and liquid chromatography coupled with tandem mass spectrometry. Harmful Algal 6:734–744

    CAS  Google Scholar 

  • Kwong RW, Wang WX, Lam PK, Yu PK (2006) The uptake, distribution and elimination of paralytic shellfish toxins in mussels and fish exposed to toxic dinoflagellates. Aquat Toxicol 80:82–91

    CAS  Google Scholar 

  • Larocque R, Cembella AD (1991) Résultats du premier programme de suivi des populations de phytoplancton toxique dans l’estuaire et le Golfe du Saint-Laurent (Région du Québec). Rapp Tech Can Sci Hal Aquat 1796: 42 p

    Google Scholar 

  • Lassus P, Ledoax M, Bardouill M, Bohee M (2000) Comparative efficiencies of different non-toxic microalgal diet in detoxification of PSP-contaminated oyster. J Nat Toxin 9:1–12

    CAS  Google Scholar 

  • Lawrence JF, Menard C, Charbonneau CF, Hall S (1991) A study of ten toxins associated with paralytic shellfish poison using prechromatographic oxidation and liquid chromatography with fluorescence detection. J AOAC 74:404–409

    CAS  Google Scholar 

  • Lee NS, Kim BT, Kim DH, Kobashi K (1995) Purification and reaction mechanism of arylsulfate sulfotransferase from Haemophilus K-12, a mouse intestinal bacterium. J Biochem 118:796–801

    CAS  Google Scholar 

  • Lefebvre KA, Bill BD, Erickson A, Baugh KA, O’Rourke L, Costa PR, Nance S, Trainer VL (2008) Characterization of intracellular and extracellular saxitoxin levels in both field and cultured Alexandrium spp. Samples from Sequim Bay, Washington. Mar Drugs 6:103–116

    CAS  Google Scholar 

  • Lewitus AJ, Haves KC, Gransden SG, Glascow HB, Burkholder JM Jr, Glibert PM, Morton SL (2001) Ecological characterization of a widespread Scrippsiella red tide in South Carolina estuaries: a newly observed phenomenon. In: Hallegraeff GM, Blackbuna S, Bolch C, Lewis R (eds) Proceedings of the ninth international conference on harmful algal blooms. Intergovernmental Oceanographic Commission, United Nations Educational Scientific, and Oalmral Organization, Paris, France

    Google Scholar 

  • Li A, Stoeker DK, Coats DW (2000) Spatial and temporal aspects of Gyrodinium galatheanum in Chesapeake Bay: distribution and mixotrophy. J Plankton Res 22:2105–2124

    Google Scholar 

  • Li A, Stoeker DK, Coats DW (2001) Mixotrophy in Gyrodinium galatheanum (Dinophyceae): grazing responses to light intensity and inorganic nutrients. J Phycol 36:33–45

    Google Scholar 

  • Lim PT, Leaw CP, Usup G (2001) First incidence of paralytic shellfish poisoning on the east coast of Peninsular Malaysia. In: Sasekumar A, Usup G, Noraieni M, Ung EH, Lee SC (eds), Book of abstracts Asia-Pacific Conference on marine science & technology. Marine science into the new millennium: new perspectives & challenges, 12–16 May 2001, Kuala Lumpur, Malaysia

    Google Scholar 

  • Lim PT, Usup G, Leaw CP, Ogata T (2005) First report of Alexandrium taylori and Alexandrium peruvianum (Dinophyceae) in Malaysia waters. Harmful Algae 4:391–400

    Google Scholar 

  • Lim PT, Ogata T (2005) Salinity effect on growth and toxin production of four tropical Alexandrium species (Dinophyceae). Toxicon 45:699–710

    CAS  Google Scholar 

  • Lim PT, Leaw CP, Usup G, Kobiyama A, Koike K, Ogata T (2006) Effects of light and temperature on growth, nitrate uptake, and toxin production of two tropical dinoflagellates: Alexandrium tamiyavanichi and Alexandrium minutum (Dinophyceae). J Phycol 42:786–799

    CAS  Google Scholar 

  • Lim PT, Leaw CP, Kobiyama A, Ogata T (2010) Growth and toxin production of tropical Alexandrium minutum Halim (Dinophyceae) under various nitrogen to phosphorus ratios. J Appl Phycol 22:203–210

    CAS  Google Scholar 

  • Lippemeier S, Frampton DMF, Blackburn SI, Geier SC, Negri AP (2003) Influence of phosphorus limitation on toxicity and photosynthesis of Alexandrium minutum (Dinophyceae) monitored by in-line detection of variable chlorophyll fluorescence. J Phycol 39(2):320–331

    Google Scholar 

  • Llewellyn LE (2006) Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat Prod Rep 23:200–222

    CAS  Google Scholar 

  • Lomas MW, Glibert EM (2000) Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates. J Phycol 36:903–913

    CAS  Google Scholar 

  • Lu YH, Hwang DF (2002) Effects of toxic dinoflagellates and toxin biotransformation in bivalves. J Nat Toxins 11:315–322

    CAS  Google Scholar 

  • Mahar J, Lukàcs GL, Li Y, Hall S, Moczydlowski E (1991) Pharmacological and biochemical properties of saxiphilin, a soluble saxitoxin-binding protein from the bullfrog (Rana catesbiana). Toxicon 29:53–71

    CAS  Google Scholar 

  • Martin JL, White AW, Sullivan JJ (1990) Anatomical distribution of paralytic shellfish toxins in softshell clams. In: Granéli E, Sundström B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, NY, pp 379–384

    Google Scholar 

  • Negri AP, Bolch CJS, Geier S, Green DH, Park TG, Blackburn SI (2007) Widespread present of hydrophobic paralytic shellfish toxins in Gymnodinium catenatum. Harmful Algae 6:774–780

    CAS  Google Scholar 

  • Negri AP, Jones GJ (1995) Bioaccumulation of paralytic shellfish poisoning (PSP) toxins from the cyanobacterium Anabaena circinalis by the freshwater mussel Alathyria condola. Toxicon 33:667–678

    CAS  Google Scholar 

  • Noguchi T, Chen S, Arakawa O, Hashimoto K (1989) A unique composition of PSP in “hoigi” scallop Chlamys nobilis. In: Natori S, Hashimoto K, Ueno Y (eds) Mycotoxins and phycotoxins’88. Elsevier, Amsterdam, pp 351–358

    Google Scholar 

  • Nygaard K, Tobiesen A (1998) Bacterivory in algae: a survival strategy during nutrient limitation. Limnol Oceanogr 38:273–279

    Google Scholar 

  • Ogata T, Kodama M, Ishimaru T (1989) Effect of water temperature and light intensity on growth rate and toxin production in toxic dinoflagellates. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, Environmental science and toxicology. Elsevier, New York, NY, pp 423–426

    Google Scholar 

  • Ogata T, Pholpunthin P, Fukuyo Y, Kodama M (1990) Occurrence of Alexandrium cohorticula in Japanese coastal water. J Appl Phycol 2:351–356

    Google Scholar 

  • Oshima Y, Sugino K, Yasumoto T (1989) Latest advance in HPLC analysis of paralytic shellfish toxins. In: Natori S, Hashimoto K, Ueno Y (eds) Mycotoxins and phycotoxins’88. Elsevier Science Publishers, Amsterdam, pp 319–326

    Google Scholar 

  • Oshima Y, Blackburn SI, Hallegraeff GM (1993) Comparative study on paralytic shellfish toxin profiles of the dinoflagellates Gymnodinium catenatum from three different countries. Mar Biol 116:471–476

    CAS  Google Scholar 

  • Oshima Y (1995) Post-column derivatization HPLC method for the analysis of PSP. J AOAC Int 78:795–799

    Google Scholar 

  • Parkhill J, Cembella A (1999) Effects of salinity, light and organic nitrogen on growth and toxigenicity of marine dinoflagellate Alexandrium tamarense from northeastern Canada. J Plankton Res 21:939–955

    Google Scholar 

  • Pitcher GC, Cembella AD, Joyce LB, Larsen J, Probyn TA, Ruiz Sebastian C (2007) The dinoflagellate Alexandrium minutum in Cape Town harbour (South Africa): bloom characteristics, phylogenetic analysis and toxin composition. Harmful Algae 6:823–836

    CAS  Google Scholar 

  • Poulton NJ, Keafer BA, Anderson DM (2005) Toxin variability in natural population of Alexandrium fundyense in Casco Bay, Maine-evidence of nitrogen limitation. Deep-Sea Res 52(PT2):2501–2521

    Google Scholar 

  • Proctor NH, Chan SL, Truvor AJ (1975) Production of saxitoxin by culture of Gonyaulax catenella. Toxicon 13:1–19

    CAS  Google Scholar 

  • Quilliam MA, Janecek M (1993) Characterization of oxidation products of paralytic shellfish poisoning toxins by liquid chromatography/mass spectrometry. Rapid Comm Mass Spectrom 7:482–487

    CAS  Google Scholar 

  • Quilliam MA (1998) Phycotoxins. J AOAC Int 81:142–151

    Google Scholar 

  • Rodrigue DC, Etzel RA, Hall S, de Porras E, Velasquez OH, Tauxe RV, Kilbourne EM, Blake PA (1990) Lethal paralytic shellfish poisoning in Guatemala. Am J Trop Med Hyg 42:267–271

    CAS  Google Scholar 

  • Rodríguez P, Alfonso A, Botana AM, Vieytes MR, Botana LM (2010) Comparative analysis of pre- and post-column oxidation methods for detection of paralytic shellfish toxins. Toxicon 56:448–457

    Google Scholar 

  • Romdhane MS, Eilertsen HC, Yahia OKD, Yahia MND (1998) Toxic dinoflagellate blooms in Tunisian lagoons: causes and consequences for aquaculture. In: Reguera B, Blance J, Fernandez ML, Wyatt T (eds) Harmful algae. Xunta de Galicia and Intergovernmental Oceanographic Commission of United Nations Educational, Scientific and Cultural Organization, Paris, France, pp 80–83

    Google Scholar 

  • Schantz EJ, McFarren EF, Schafer ML, Lewis KH (1958) Purified shellfish poison for bioassay standardization. J Assoc Off Anal Chem 41:160–168

    CAS  Google Scholar 

  • Schantz EJ, Ghazarossian VE, Schnoes HK, Strong FM, Springer JP, Pezzanite JO, Clardy J (1975) Structure of saxitoxin. J Am Chem Soc 97:1238–1239

    CAS  Google Scholar 

  • Sebastian CR, Etheridge SM, Cook PA, O’Ryan C, Pitcher GC (2005) Phylogenetic analysis of toxic Alexandrium (Dinophyceae) isolates from South Africa: implications for the global phylogeography of Alexandrium tamarense species complex. Phycologia 44:49–60

    Google Scholar 

  • Sharma R, Venkateshvaran K, Purushothaman CS (2011) Bioaccumulation and depuration of paralytic shellfish toxin in Perna viridis and Meretrix meretrix from Mumbai, India. Ind J Marine Sci 40:542–549

    CAS  Google Scholar 

  • Shimizu Y, Yoshioka M (1981) Transformation of paralytic shellfish toxins as demonstrated in scallop homogenates. Science 212:547–549

    CAS  Google Scholar 

  • Shimizu Y, Watanabiz N, Wrensfori G (1993) Biosynthesis of brevetoxins and heterotrophic metabolism in Gymnodinium breve. In: Lassus R, Arzul C, Erard-Le-Denn E, Gentian R, Mm-caillou C (eds) Harmful marine algal blooms. Lavoisier Publishing, Paris, France, pp 351–357

    Google Scholar 

  • Silvert W, Bricelj M, Cembella A (1998) Dynamic modelling of PSP toxicity in the surfcalm (Spisula solidissima): multicompartmental kinetics and biotransformation. In: Rguera B, Blanco J, Fernandez ML, Wyatt T (eds) Harmful algae. VIII international Conference. Intergovernmental Oceanographic Commission of UNESCO, Paris, pp 437–440

    Google Scholar 

  • Siu G, Young M, Chan D (1997) Environmental and nutritional factors which regulate population dynamics and toxin production in the dinoflagellate Alexandrium catenella. Hydrobiology 352:117–140

    CAS  Google Scholar 

  • Smil V (2001) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food. Tile MIT Press, Cambridge, UK

    Google Scholar 

  • Smith EA, Grant F, Ferguson CMJ, Gallacher S (2001) Biotransformations of paralytic shellfish toxins by bacteria isolated from bivalve molluscs. Appl Environ Microbiol 67(5):2345–2353

    CAS  Google Scholar 

  • Sommer H, Meyer KF (1937) Paralytic shellfish poisoning. Achiev Pathol Labor Med 24:560–598

    CAS  Google Scholar 

  • Soon TK, Ransangan J (2014) A review of feeding behavior, growth, reproduction and aquaculture site selection for green-lipped mussel, Perna viridis. Adv Biosci Biotechnol 5:462–469

    Google Scholar 

  • Su Z, Sheets M, Ishida H, Li FH, Barry WH (2004) Saxitoxin blocks L-type I ca. J Pharmacol Exp Ther 308:324–329

    CAS  Google Scholar 

  • Sugawara A, Imamura T, Aso S, Ebitani K (1997) Change of paralytic shellfish poison by the marine bacteria living in the intestine of Japanese surf clam, Pseudocardium sybillae and the brown sole, Pleuronectes herensteini. Sci Rep Hokkaido Fisher Exp Stat 50:35–42

    CAS  Google Scholar 

  • Sullivan JJ (1982) Paralytic shellfish poisoning: analytical and biochemical investigation. PhD thesis, University of Washington, Seattle.

    Google Scholar 

  • Taylor FJR (1984) Toxic dinoflagellates: taxonomic and biogeographic aspects with emphasis on Protogonyaulax. In: Ragelis EP (ed) Seafood toxins, vol 262, Amer. Chem. Soc. Symposium Ser. ACS, Washington, DC, pp 77–97

    Google Scholar 

  • Teste V, Briand JF, Nicholson BC, Puiseux-Dao S (2002) Comparison of changes in toxicity during growth of Anabaena circinalis (cyanobacteria) determined by mouse neuroblastoma bioassay and HPLC. J Appl Phycol 14:399–407

    CAS  Google Scholar 

  • Usleber E, Dietrich R, Burk C, Schneider E, Martlbauer E (2001) Immunoassay methods for paralytic shellfish poisoning toxins. J Assoc Off Anal Chem 84(5):1649–1656

    CAS  Google Scholar 

  • Usup G, Kulis DM, Anderson DM (1994) Growth and toxin production of the toxic dinoflagellate Pyrodinium bahamense var. compressum in laboratory cultures. Nat Toxins 2:254–262

    CAS  Google Scholar 

  • Usup G, Kulis DV, Anderson DM (1995) Toxin production in a Malaysian isolate of the toxic dinoflagellate Pyrodinium bahamense var. compressum. In: Lassus P, Arzul G, Erard E, Gentien P, Marcailiou C (eds) Harmful marine algal blooms. Lavoisier, Paris, pp 519–524

    Google Scholar 

  • Usup G, Pin LC, Ahmad A, Teen LP (2002) Alexandrium (Dinophyceae) species in Malaysian waters. Harmful Algae 1:265–275

    Google Scholar 

  • Vaulot D, Lebot N, Marie D, Fukai E (1996) Effect of phosphorus on Synechococcus cell cycle in surface Mediterranean waters during summer. Appl Environ Microbiol 62:2527–2533

    CAS  Google Scholar 

  • Velzeboer RMA, Baker PD, Rositano J, Heresztyn T, Codd GA and Raggett SL (2000) Geographical patterns of occurrence and composition of saxitoxins in the cyanobacterial genus Anabaena (Nostocales, Cyanophyta) in Australia. Phycologia 39:395–407

    Google Scholar 

  • Vieytes MR, Cabado AG, Alfonso A, Louzao MC, Botana AM, Botana LM (1993) Solid phase radioreceptor assay for paralytic shellfish toxins. Anal Biochem 211:87–93

    CAS  Google Scholar 

  • Wang JX, Salata JJ, Bennetn PB (2003) Saxitoxin is a gating modifier of hERG K + channels. J Gen Physiol 121:583–598

    CAS  Google Scholar 

  • Wang S, Tang D, He F, Fukuyo Y, Azanza RV (2008) Occurrences of harmful algal blooms (HABs) associated with ocean environments in the South China Sea. Hydrobiology 596:79–93

    Google Scholar 

  • Wiese M, D’Agostino PM, Mihali TK, Moffitt MC, Neilan BA (2010) Neurotoxic alkaloids: saxitoxin and its analogs. Mar Drugs 8:2185–2211

    CAS  Google Scholar 

  • World Health Organization (WHO) (1984) Environmental Health Criteria 37: Aquatic (Marine and Freshwater) Biotoxins.

    Google Scholar 

  • Xie W, Liu X, Yang X, Zhang C, Bian Z (2013) Accumulation and depuration of paralytic shellfish poisoning toxins in the oyster Ostrea rivularis Gould - chitosan facilitates the toxin depuration. Food Control 30:446–452

    CAS  Google Scholar 

  • Yoshida T, Sako Y, Kakutani T, Fujii A, Uchida A, Ishida Y, Arakawa O, Noguchi T (1998) Comparative study of two sulfotransferases for sulfation to N-21 of Gymnodinium catenatum and Alexandrium catenella toxins. In: Reguera B, Blanco J, Fernández ML, Wyatt T (eds) Harmful algae. Xunta de Galicia and IOC, United Nations Educational, Scientific, and Cultural Organization, Grafisant, Spain, pp 366–369

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Niche Research Grant Scheme (NRGS0003) from the Ministry of Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Ransangan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tan, K.S., Ransangan, J. (2015). Factors Influencing the Toxicity, Detoxification and Biotransformation of Paralytic Shellfish Toxins. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 235. Reviews of Environmental Contamination and Toxicology, vol 235. Springer, Cham. https://doi.org/10.1007/978-3-319-10861-2_1

Download citation

Publish with us

Policies and ethics