Skip to main content

Determination of Jiles-Atherton Model Parameters Using Differential Evolution

  • Conference paper
Mechatronics - Ideas for Industrial Application

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 317))

Abstract

Effective and robust method of determination of Jiles-Atherton model’s parameters is one of the most significant problem connected with magnetic hysteresis loop modelling. Parameters of this model are determined during the optimisation process targeting experimental results of hysteresis loop measurements. However, due to appearance of local minima, the cognitive methods have to be applied. One of the most common method are evolutionary strategies. On the other hand, typical evolutionary strategies, such as μ + λ are expensive from the point of view of calculation time. To overcome this problem, differential evolution was applied. As a result, the calculation time for determination of Jiles-Atherton model’s parameters was significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jiles, D.C., Atherton, D.: Theory of ferromagnetic hysteresis. Journal of Applied Physics 55, 2115 (1984)

    Article  Google Scholar 

  2. Jiles, D.C., Atherton, D.: Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials 61, 48 (1986)

    Article  Google Scholar 

  3. Pop, N., Caltun, O.: Jiles-Atherton model used in the magnetization process study for the composite magnetoelectric materials based on cobalt ferrite and barium titanate. Canadian Journal of Physics 89, 787 (2011)

    Article  Google Scholar 

  4. Chwastek, K., Szczyglowski, J.: Estimation methods for the Jiles-Atherton model parameters – a review. Electrical Review (Przegląd Elektrotechniczny) 84, 145 (2008)

    Google Scholar 

  5. Szewczyk, R.: Modelling of the magnetic and magnetostrictive properties of high permeability Mn-Zn ferrites. PRAMANA-Journal of Physics 67, 1165–1171 (2006)

    Article  Google Scholar 

  6. Xiong, E., Wang, S., Miao, X.: Research on magnetomechanical coupling effect of Q235 steel member specimens. Journal of Shanghai Jiaotong University (Science) 17, 605 (2012)

    Article  Google Scholar 

  7. Jia, Z., Liu, H., Wang, F., Ge, C.: Research on a novel force sensor based on giant magnetostrictive material and its model. Mathematics and Computers in Simulation 80, 1045 (2010)

    Article  MathSciNet  Google Scholar 

  8. Zheng, J., Cao, S., Wang, H.: Modeling of magnetomechanical effect behaviors in a giant magnetostrictive device under compressive stress. Sensors & Actuators: A. Physical 143, 204 (2008)

    Article  Google Scholar 

  9. Zhang, D., Kim, H., Li, W., Koh, C.: Analysis of magnetizing process of a new anisotropic bonded NdFeB permanent magnet using FEM combined with Jiles-Atherton hysteresis model. IEEE Transactions on Magnetics 49, 2221 (2013)

    Article  Google Scholar 

  10. Zirka, S.E., Moroz, Y., Harrison, R., Chwastek, K.: On physical aspects of the Jiles-Atherton hysteresis models. Journal of Applied Physics 112, 43916 (2012)

    Article  Google Scholar 

  11. Messal, O., Sixdenier, F., Morel, L., Burais, N.: Temperature dependent extension of the Jiles-Atherton model: Study of the variation of microstructural hysteresis parameters. IEEE Transactions on Magnetics 48, 2567 (2012)

    Article  Google Scholar 

  12. Xu, M., Xu, M., Li, J., Ma, S.: Discuss on using Jiles-Atherton theory for charactering magnetic memory effect. Journal of Applied Physics 112, 93902 (2012)

    Article  Google Scholar 

  13. Li, J., Xu, M.: Modified Jiles-Atherton-Sablik model for asymmetry in magnetomechanical effect under tensile and compressive stress. Journal of Applied Physics 110, 63918 (2011)

    Article  Google Scholar 

  14. Huang, S., Chen, H., Wu, C., Guan, C.: Distinguishing Internal Winding Faults From Inrush Currents in Power Transformers Using Jiles-Atherton Model Parameters Based on Correlation Coefficient. IEEE Transactions on Power Delivery 27, 548 (2012)

    Article  Google Scholar 

  15. Jiles, D.C., Thoelke, J.B.: Theory of ferromagnetic hysteresis: determination of model parameters from experimental hysteresis loops. IEEE Trans. Magn. 25, 3928 (1989)

    Article  Google Scholar 

  16. Pop, N.C., Caltun, O.F.: Jiles-Atherton Magnetic Hysteresis Parameters Identification. Acta Physica Polonica A 120, 491 (2011)

    Google Scholar 

  17. Chwastek, K., Szczygłowski, J.: Identification of a hysteresis model parameters with genetic algorithms. Mathematics and Computers in Simulation 71, 206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Szewczyk, R., Frydrych, P.: Extension of the Jiles-Atherton Model for Modelling the Frequency Dependence of Magnetic Characteristics of Amorphous Alloy Cores for Inductive Components of Electronic Devices. Acta Physica Polonica A 118, 782 (2010)

    Google Scholar 

  19. Jackiewicz, D., Szewczyk, R., Salach, J.: Modelling the magnetic characteristics of construction steels. Pomiary Automatyka Robotyka 16(2), 552–555 (2012) (in Polish)

    Google Scholar 

  20. Ramesh, A., Jiles, D.C., Bi, Y.: Generalization of hysteresis modeling to anisotropic materials. Journal of Applied Physics 81, 5585 (1997)

    Article  Google Scholar 

  21. Ramesh, A., Jiles, D., Roderik, J.: A model of anisotropic anhysteretic magnetization. IEEE Transactions on Magnetics 32, 4234 (1996)

    Article  Google Scholar 

  22. Baghel, A., Kulkarni, S.: Hysteresis modeling of the grain-oriented laminations with inclusion of crystalline and textured structure in a modified Jiles-Atherton model. Journal of Applied Physics 113, 43908 (2013)

    Article  Google Scholar 

  23. Scholz, W., Forster, H., Suess, D., Schrefl, T., Fidler, J.: Micromagnetic simulation of domain wall pinning and domain wall motion. Computational Materials Science 25, 540 (2002)

    Article  Google Scholar 

  24. Szewczyk, R.: Extension for the model of the magnetic characteristics of anisotropic metallic glasses. Journal of Physics D – Applied Physics 40, 4109 (2007)

    Article  Google Scholar 

  25. Szewczyk, R.: Modeling the magnetic properties of amorphous soft magnetic materials for sensor applications. Journal of Optoelectronics and Advanced Materials 6, 1723 (2007)

    Google Scholar 

  26. Shampine, L.F.: Vectorized Adaptive Quadrature in MATLAB. Journal of Computational and Applied Mathematics 211, 131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Daomin, M., Shengtao, L.: A comparison of numerical methods for charge transport simulation in insulating materials. IEEE Transactions on Dielectrics and Electrical Insulation 20, 955 (2013)

    Article  Google Scholar 

  28. Storn, R.: Differential evolution research trends and open questions. In: Chakraborty, U. (ed.) Advances in Differential Evolution. SCI, vol. 143, pp. 1–31. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Core Team, R.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austriau (2013), http://www.R-project.org

  30. Ardia, D., Mullen, K.M., Peterson, B.G., Ulrich, J.: DEoptim: Differential Evolution in R. Version 2.2.2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Biedrzycki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Biedrzycki, R., Szewczyk, R., Švec, P., Winiarski, W. (2015). Determination of Jiles-Atherton Model Parameters Using Differential Evolution. In: Awrejcewicz, J., Szewczyk, R., Trojnacki, M., Kaliczyńska, M. (eds) Mechatronics - Ideas for Industrial Application. Advances in Intelligent Systems and Computing, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-319-10990-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10990-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10989-3

  • Online ISBN: 978-3-319-10990-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics