Skip to main content

A Generalisation of the Hyperresolution Principle to First Order Gödel Logic

  • Conference paper
Computational Intelligence (IJCCI 2012)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 577))

Included in the following conference series:

Abstract

In the paper, we generalise the well-known hyperresolution principle to the standard first-order Gödel logic. Our approach is based on the translation of a formula of Gödel logic to an equivalent satisfiable finite order clausal theory, consisting of order clauses. We introduce a notion of quantified atom: a formula a is a quantified atom iff a = Q x p(t 0,…,t τ) where Q is a quantifier (∀, ∃); p(t 0,…,t τ) is an atom; x is a variable occurring in p(t 0,…,t τ); for all i ≤ τ, either t i = x or x does not occur in t i. Then an order clause is a finite set of order literals of the form ε 1 ⋄ ε 2 where ε i is either an atom or a quantified atom, and ⋄ is a connective either \(\eqcirc \) or ≺. \(\eqcirc \) and ≺ are interpreted by the equality and strict linear order on [0,1], respectively. For an input theory of Gödel logic, the proposed translation produces a so-called admissible order clausal theory. On the basis of the hyperresolution principle, a calculus operating over admissible order clausal theories, is devised. The calculus is proved to be refutation sound and complete for the countable case.

This work is partially supported by VEGA Grant 1/0979/12 and Slovak Literary Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apt, K.R.: Introduction to logic programming. Tech. Rep. CS-R8826, Centre for Mathematics and Computer Science, Amsterdam, The Netherlands (1988)

    Google Scholar 

  2. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s theorem for prenex gödel logic and its consequences for theorem proving. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 201–215. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics - a survey. J. Log. Comput. 13(6), 835–861 (2003)

    Article  Google Scholar 

  4. Baaz, M., Fermüller, C.G.: A resolution mechanism for prenex gödel logic. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 67–79. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)

    Article  MathSciNet  Google Scholar 

  6. Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of transitive relations. J. ACM 45(6), 1007–1049 (1998)

    Article  MathSciNet  Google Scholar 

  7. Guller, D.: A DPLL procedure for the propositional Gödel logic. In: Filipe, J., Kacprzyk, J. (eds.) IJCCI (ICFC-ICNC), pp. 31–42. SciTePress (2010)

    Google Scholar 

  8. Guller, D.: On the satisfiability and validity problems in the propositional gödel logic. In: Madani, K., Dourado Correia, A., Rosa, A., Filipe, J. (eds.) Computational Intelligence. SCI, vol. 399, pp. 211–228. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-27534-0_14

    Chapter  Google Scholar 

  9. Hähnle, R.: Short conjunctive normal forms in finitely valued logics. J. Log. Comput. 4(6), 905–927 (1994)

    Article  MathSciNet  Google Scholar 

  10. Marchioni, E., Metcalfe, G.: Interpolation properties for uninorm based logics. In: ISMVL, pp. 205–210. IEEE Computer Society (2010)

    Google Scholar 

  11. Nonnengart, A., Rock, G., Weidenbach, C.: On generating small clause normal forms. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 397–411. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)

    Article  MathSciNet  Google Scholar 

  13. Sheridan, D.: The optimality of a fast CNF conversion and its use with SAT. In: SAT (2004)

    Google Scholar 

  14. de la Tour, T.B.: An optimality result for clause form translation. J. Symb. Comput. 14(4), 283–302 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Guller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Guller, D. (2015). A Generalisation of the Hyperresolution Principle to First Order Gödel Logic. In: Madani, K., Correia, A., Rosa, A., Filipe, J. (eds) Computational Intelligence. IJCCI 2012. Studies in Computational Intelligence, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-11271-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11271-8_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11270-1

  • Online ISBN: 978-3-319-11271-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics