Skip to main content

A New Modeling Pipeline for Physics-Based Topological Discontinuities: The DYNAMe Process

  • Conference paper
Smart Graphics (SG 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8698))

Included in the following conference series:

  • 1358 Accesses

Abstract

This work introduces a new modeling/simulation pipeline for handling topological discontinuities as they appear in fracturing, tearing or cracking phenomena. This pipeline combines, in a cascade (1) physics-based particle modeling, which enables a wide variety of temporal phenomena, including physics state changes; (2) explicit topological modeling, which makes it possible to manage a wide variety of shape-independent topologies and robust topological transformations; and, in between, free, non predetermined association, enabling topological transformations all along the animation under control of the point-based movement produced by the physics-based model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Brien, J.F., Bargteil, A.W., Hodgins, J.K.: Graphical modeling and animation of ductile fracture. In: Proc. of SIGGRAPH, pp. 291–294 (2002)

    Google Scholar 

  2. Bao, Z., Mo Hong, J., Teran, J., Fedkiw, R.: Fracturing Rigid Materials. IEEE Transactions on Visualization and Computer Graphics 13(2), 370–378 (2007)

    Article  Google Scholar 

  3. Glondu, L., Marchal, M., Dumont, G.: Real-Time Simulation of Brittle Fracture using Modal Analysis. IEEE Transactions on Visualization and Computer Graphics 19(2), 201–209 (2013)

    Article  Google Scholar 

  4. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., Guibas, L.J.: Mesh-less animation of fracturing solids. In: Proc. of ACM SIGGRAPH (2005)

    Google Scholar 

  5. Ganovelli, F., Cignoni, P., Montani, C., Scopigno, R.: A multiresolution model for soft objects supporting interactive cuts and lacerations. Computer Graphics Forum 19(3), 271–281 (2000)

    Article  Google Scholar 

  6. Metaaphanon, N., Bando, Y., Chen, B.-Y., Nishita, T.: Simulation of Tearing Cloth with Frayed Edges. Comput. Graph. Forum 28(7), 1837–1844 (2009)

    Article  Google Scholar 

  7. Meseure, P., Darles, E.: X Skapin. Topology-based Physical Simulation. In: Proc. of VRIPHYS 2010 - Virtual Reality Interaction and Physical Simulation 2010 (VRIPHYS), Denmark, pp. 1–10 (2010)

    Google Scholar 

  8. Fléchon, E., Zara, F., Damiand, G., Jaillet, F.: A generic topological framework for physical simulation. In: 21st International Conference on Computer Graphics, Visualization and Computer Vision, pp. 104–113 (2013)

    Google Scholar 

  9. Imagire, T., Johan, H., Nishita, T.: A fast method for simulating destruction and the generated dust and debris. The Visual Computer 25(5-7), 719–727 (2009)

    Article  Google Scholar 

  10. Luciani, A., Jimenez, S., Florens, J.L., Cadoz, C., Raoult, O.: Computational physics: A modeler simulator for animated physical objects. In: Proc. of Eurographics (1991)

    Google Scholar 

  11. Tonnesen, D.: Modeling liquids and solids using thermal particles. In: Graphics Interface 1991 (1991)

    Google Scholar 

  12. Greenspan, D.: Particle Modeling. Birkhauser (1997)

    Google Scholar 

  13. Luciani, A., Godard, A.: Simulation of Physical Object Construction Featuring Irreversible State Changes. In: Proc. of WSCG, pp. 321–330 (1997)

    Google Scholar 

  14. Kalantari, S., Luciani, A., Castagné, N.: A new way to model physics-based topology transformations: Splitting MAT. In: Christie, M., Li, T.-Y. (eds.) SG 2014. LNCS, vol. 8698, pp. 146–153. Springer, Heidelberg (2014)

    Google Scholar 

  15. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. Int. J. Comput. Geom. Appl. 4(3), 275–324 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Darles, E., Kalantari, S., Skapin, X., Crespin, B., Luciani, A.: Hybrid Physical-Topological Modeling of Physical Shapes Transformations. In: Proc. of CASA 2011, pp. 154–157 (2011)

    Google Scholar 

  17. Luciani, A., Allaoui, A., Castagné, N., Darles, E., Skapin, X., Meseure, P.: MORPHO-Map, A New Way to Model Animation of Topological Transformations. In: Proc. of the 9th VISIGRAPP, Lisbon, Portugal, January 5-8 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Luciani, A., Castagné, N., Meseure, P., Skapin, X., Kalantari, S., Darles, E. (2014). A New Modeling Pipeline for Physics-Based Topological Discontinuities: The DYNAMe Process. In: Christie, M., Li, TY. (eds) Smart Graphics. SG 2014. Lecture Notes in Computer Science, vol 8698. Springer, Cham. https://doi.org/10.1007/978-3-319-11650-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11650-1_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11649-5

  • Online ISBN: 978-3-319-11650-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics