Skip to main content

Common Neighbor Query-Friendly Triangulation-Based Large-Scale Graph Compression

  • Conference paper
Web Information Systems Engineering – WISE 2014 (WISE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8786))

Included in the following conference series:

Abstract

Large-scale graphs appear in many web applications, and are inevitable in web data management and mining. A lossless compression method for large-scale graphs, named as bound-triangulation, is introduced in this paper. It differs itself from other graph compression methods in that: 1) it can achieve both good compression ratio and low compression time. 2) The compression ratio can be controlled by users, so that compression ratio and processing performance can be balanced. 3) It supports efficient common neighbor query processing over compressed graphs. Thus, it can support a wide range of graph processing tasks. Empirical study over two real-life large-scale social networks, which different underlying data distributions, show the superior of the proposed method over other existing graph compression methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, M., Mitzenmacher, M.: Towards compressing web graphs. In: Proceedings of the Data Compression Conference, DCC 2001, pp. 203–212. IEEE (2001)

    Google Scholar 

  2. Blandford, D., Blelloch, G.E.: Index compression through document reordering. In: Proceedings of the Data Compression Conference, DCC 2002, pp. 342–351. IEEE (2002)

    Google Scholar 

  3. Boldi, P., Vigna, S.: The webgraph framework i: compression techniques. In: Proceedings of the 13th International Conference on World Wide Web, pp. 595–602. ACM (2004)

    Google Scholar 

  4. Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph compression with communities. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 95–106. ACM (2008)

    Google Scholar 

  5. Chaturvedi, A., Acharjee, T.: An efficient modified common neighbor approach for link prediction in social networks. IOSR Journal of Computer Engineering (IOSR-JCE) 12, 25–34 (2013)

    Article  Google Scholar 

  6. Cui, H.: Link prediction on evolving data using tensor-based common neighbor. In: 2012 Fifth International Symposium on Computational Intelligence and Design (ISCID), vol. 2, pp. 343–346. IEEE (2012)

    Google Scholar 

  7. Gilbert, A.C., Levchenko, K.: Compressing network graphs. In: Proceedings of the LinkKDD Workshop at the 10th ACM Conference on KDD (2004)

    Google Scholar 

  8. Hannah, D., Macdonald, C., Ounis, I.: Analysis of link graph compression techniques. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 596–601. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on Computing 7(4), 413–423 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kang, U., Faloutsos, C.: Beyond’caveman communities’: Hubs and spokes for graph compression and mining. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 300–309. IEEE (2011)

    Google Scholar 

  11. Latapy, M.: Main-memory triangle computations for very large (sparse (power-law)) graphs. Theoretical Computer Science 407(1), 458–473 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schank, T., Wagner, D.: Finding, counting and listing all triangles in large graphs, an experimental study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 606–609. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, L., Xu, C., Qian, W., Zhou, A. (2014). Common Neighbor Query-Friendly Triangulation-Based Large-Scale Graph Compression. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2014. WISE 2014. Lecture Notes in Computer Science, vol 8786. Springer, Cham. https://doi.org/10.1007/978-3-319-11749-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11749-2_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11748-5

  • Online ISBN: 978-3-319-11749-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics