Skip to main content

Merging Partially Consistent Maps

  • Conference paper
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8810))

  • 4499 Accesses

Abstract

Learning maps from sensor data has been addressed since more than two decades by Simultaneous Localization and Mapping (SLAM) systems. Modern state-of-the-art SLAM approaches exhibit excellent performances and are able to cope with environments having the scale of a city. Usually these methods are entailed for on-line operation, requiring the data to be acquired in a single run, which is not always easy to obtain. To gather a single consistent map of a large environment we therefore integrate data acquired in multiple runs. A possible solution to this problem consists in merging different submaps. The literature proposes several approaches for map merging, however very few of them are able to operate with local maps affected by inconsistencies. These methods seek to find the global arrangement of a set of rigid bodies, that maximizes some overlapping criterion. In this paper, we present an off-line technique for merging maps affected by residual errors into a single consistent global map. Our method can be applied in combination with existing map merging approaches, since it requires an initial guess to operate. However, once this initial guess is provided, our method is able to substantially lessen the residual error in the final map. We validated our approach on both real world and simulated datasets to refine solutions of traditional map merging approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P., Tipaldi, G.D., Spinello, L., Stachniss, C., Burgard, W.: Robust map optimization using dynamic covariance scaling. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (May 2013)

    Google Scholar 

  2. Blanco, J.L., Fernández-Madrigal, J.A., Gonzalez, J.: An entropy-based measurement of certainty in rao-blackwellized particle filter mapping. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3550–3555. IEEE (2006)

    Google Scholar 

  3. Bunke, H.: Graph matching: Theoretical foundations, algorithms, and applications. In: Proc. Vision Interface, vol. 2000, pp. 82–88 (2000)

    Google Scholar 

  4. Carlone, L., Ng, M.K., Du, J., Bona, B., Indri, M.: Rao-blackwellized particle filters multi robot slam with unknown initial correspondences and limited communication. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 243–249. IEEE (2010)

    Google Scholar 

  5. Carpin, S.: Fast and accurate map merging for multi-robot systems. Autonomous Robots 25(3), 305–316 (2008)

    Article  Google Scholar 

  6. Cunningham, A., Paluri, M., Dellaert, F.: Ddf-sam: Fully distributed slam using constrained factor graphs. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3025–3030. IEEE (2010)

    Google Scholar 

  7. Erinc, G., Carpin, S.: Anytime merging of appearance-based maps. Autonomous Robots 36(3), 241–256 (2014)

    Article  Google Scholar 

  8. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based slam. Magazine on Intelligent Transportation Systems 2(4), 31–43 (2010)

    Article  Google Scholar 

  9. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans. on Robotics 23(1), 34–46 (2007)

    Article  Google Scholar 

  10. Howard, A., Roy, N.: The robotics data set repository, Radish (2003), http://radish.sourceforge.net/

  11. Huang, W.H., Beevers, K.R.: Topological map merging. The International Journal of Robotics Research 24(8), 601–613 (2005)

    Article  Google Scholar 

  12. Jennings, J., Kirkwood-Watts, C., Tanis, C.: Distributed map-making and navigation in dynamic environments. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 1695–1701. IEEE (1998)

    Google Scholar 

  13. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework for graph optimization. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA) (2011)

    Google Scholar 

  14. Lazaro, M., Paz, L., Piniés, P., Castellanos, J., Grisetti, G.: Multi-robot slam using condensed measurements. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1069–1076. IEEE (2013)

    Google Scholar 

  15. Leung, K.Y.K., Barfoot, T.D., Liu, H.H.: Distributed and decentralized cooperative simultaneous localization and mapping for dynamic and sparse robot networks. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3841–3847. IEEE (2011)

    Google Scholar 

  16. Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Autonomous Robots 4, 333–349 (1997)

    Article  Google Scholar 

  17. Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2D range scans. Journal of Intelligent and Robotic Systems 18(3), 249–275 (1997)

    Article  Google Scholar 

  18. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solution to simultaneous localization and mapping. In: Proc. of the National Conference on Artificial Intelligence (AAAI), Edmonton, Canada, pp. 593–598 (2002)

    Google Scholar 

  19. Olson, E., Leonard, J., Teller, S.: Fast iterative optimization of pose graphs with poor initial estimates. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 2262–2269 (2006)

    Google Scholar 

  20. Saeedi, S., Paull, L., Trentini, M., Seto, M., Li, H.: Map merging using hough peak matching. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4683–4688. IEEE (2012)

    Google Scholar 

  21. Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial realtionships in robotics. In: Cox, I., Wilfong, G. (eds.) Autonomous Robot Vehicles, pp. 167–193. Springer (1990)

    Google Scholar 

  22. Thrun, S., Liu, Y., Koller, D., Ng, A., Ghahramani, Z., Durrant-Whyte, H.: Simultaneous localization and mapping with sparse extended information filters. Int. Journal of Robotics Research 23(7/8), 693–716 (2004)

    Article  Google Scholar 

  23. Wulf, O., Nuchter, A., Hertzberg, J., Wagner, B.: Ground truth evaluation of large urban 6d slam. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, pp. 650–657. IEEE (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bonanni, T.M., Grisetti, G., Iocchi, L. (2014). Merging Partially Consistent Maps. In: Brugali, D., Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2014. Lecture Notes in Computer Science(), vol 8810. Springer, Cham. https://doi.org/10.1007/978-3-319-11900-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11900-7_30

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11899-4

  • Online ISBN: 978-3-319-11900-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics