Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 327))

Abstract

Intelligent automated decision support systems are found to be useful for early detection of hepatitis for augmenting survivability. We present here an intelligent system for hepatitis disease diagnosis using UCI data set for experiment. We use multiple imputation technique for managing missing values in the UCI data set. One of the potential tools in this context is neural network for classification. For better diagnostic classification accuracy, various feature selection techniques are deployed as prerequisite. These features are considered to be more informative to the doctors for taking final decision. This work attempts rough set-based feature selection (RS) technique. For classification, we use incremental back propagation learning network (IBPLN), and Levenberg-Marquardt (LM) classification tested on UCI data base. We compare classification results in terms of classification accuracy, specificity, sensitivity and receiver-operating characteristics curve area(AUC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Polat, K., Gunes, S.: Hepatitis disease diagnosis using a new hybrid system based on feature selection ( FS) and artificial immune recognition system with fuzzy resource allocation. Digital Signal Processing 16(6), 889–901 (2006)

    Article  Google Scholar 

  2. Rezaee, K., et al.: An Intelligent Diagnostic System for Detection of Hepatitis using Multi-Layer Perceptron and Colonial Competitive Algorithm. The J. of Mathematics and Computer Science 4(2), 237–245 (2012)

    Google Scholar 

  3. Calisir, D., Dogantekin, E.: A new intelligent hepatitis diagnosis system: PCA-LSSVM. Expert Systems with Applications 38, 10705–10708 (2011)

    Article  Google Scholar 

  4. Neshat, M., Sargolzaei, M., Nadjaran, A.N., Masoumi, A.: Hepatitis Disease Diagnosis using Hybrid Case Based Reasoning and Particle Swarm Optimization. ISRN Artificial Intelligence (2012), doi:10.5402/2012/609718

    Google Scholar 

  5. http://archieve.ics.uci.edu/ml/datasets/Hepatitis

  6. Honaker, J., King, G., Blackwell, M.: 2011, AMELIA II: A Program for Missing Data ( accessed: 3rd, November 2011), http://gking.harvard.edu/amelia/

  7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Honaker, J., King, G.: What to do About Missing Values in Time Series Cross-Section Data. American J. of Political Science 54(2), 561–581 (2010)

    Article  Google Scholar 

  9. King, G., Tomaz, M., Wittenberg, J.: Making the Most of Statistical Analyses: Improving and Presentation. American Journal of Political Science 44(2), 341–355 (2000)

    Article  Google Scholar 

  10. Pawlak, Z.: Rough sets. Int. J. of Parallel Programming 11(5), 341–356 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Klwer Academic Publishing, Dordrecht (1991)

    Book  MATH  Google Scholar 

  12. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 7, 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  13. Hebb, D.O.: The Organization of Behavior, a Neuropsychological Theory. John Wiley, New York (1949)

    Google Scholar 

  14. Roy, A.: Artificial Neural Networks- A Science in Trouble. SIGKDD Explorations 1(2), 33–38 (2000)

    Article  Google Scholar 

  15. Rumelhart, D.E., McClelland, J.L. (eds.): Parallel Distributed Processing: Explorations in Microstructures of Cognition, vol. 1, pp. 318–362. Foundations, MIT Press, Cambridge (1986)

    Google Scholar 

  16. Rumelhart, D.E.: The Architecture of Mind: A Connectionist Approach. In: Haugeland, J. (ed.) Mind_design II, ch. 8, pp. 205–232. MIT Press (1986)

    Google Scholar 

  17. Grossberg, S.: Nonlinear Neural Networks: Principles, Mechanisms, and Architectures. Neural Networks 1, 17–61 (1988)

    Article  Google Scholar 

  18. Moody, J., Darken, C.: Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation 1, 281–294 (1989)

    Article  Google Scholar 

  19. Fu, L., Hsu, H., Principe, J.C.: Incremental Backpropagation Learning Networks. IEEE Trans. on Neural Networks 7(3), 757–761 (1996)

    Article  Google Scholar 

  20. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representation by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructures of Cognition, vol. 1, MIT Press, MA (1986)

    Google Scholar 

  21. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Quarterly in Applied Mathematics 2(2), 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  22. Marquardt, D.W.: An algorithm for the least-squares estimation of nonlinear parameters. SIAM Journal of Applied Mathematics 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  23. Amitava Basu, M.D.: Pathologist, India (personal communication)

    Google Scholar 

  24. Hall, E., Frank, G., Holmes, B., Pfahringer, P., Reutemann, I., Witten, H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  25. Hung, M.S., Shankar, M., Hu, M.Y.: Estimating Breast Cancer Risks Using Neural Networks. J. Operational Research Society 52, 1–10 (2001)

    Article  Google Scholar 

  26. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximator. Neural Network 2, 359–366 (1991)

    Article  Google Scholar 

  27. Goa, D.: On structures of supervised linear basis function feedforward three-layered neural networks. Chin. J. Comput. 21(1), 80–86 (1998)

    Google Scholar 

  28. Huang, M.L., Hung, Y.H., Chen, W.Y.: Neural network classifier with entropy based feature selection on breast cancer diagnosis. J. Med. Syst. 34(5), 865–873 (2010)

    Article  Google Scholar 

  29. Alyuda NeuroIntelligence 2.2, http://www.alyuda.com

  30. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malay Mitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mitra, M., Samanta, R.K. (2015). Hepatitis Disease Diagnosis Using Multiple Imputation and Neural Network with Rough Set Feature Reduction. In: Satapathy, S., Biswal, B., Udgata, S., Mandal, J. (eds) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems and Computing, vol 327. Springer, Cham. https://doi.org/10.1007/978-3-319-11933-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11933-5_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11932-8

  • Online ISBN: 978-3-319-11933-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics