Skip to main content

Methods for Gene Coexpression Network Visualization and Analysis

  • Chapter
  • First Online:
Transcriptomics in Health and Disease

Abstract

Gene network analysis is an important tool for studying the changes in steady states that characterize cell functional properties, the genome-environment interplay and the health-disease transitions. The integration of gene coexpression and protein interaction data is one current frontier of systems biology, leading, for instance, to the identification of unique and common drivers to disease conditions. In this chapter the fundamentals for gene coexpression network construction, visualization and analysis are revised, emphasizing its scale-free nature, the measures that express its most relevant topological features, and methods for network validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert R (2005) Scale-free networks in cell biology. J Cell Sci 118:4947–4957

    Article  CAS  PubMed  Google Scholar 

  • Albert R, Jeong H, Barabási AL (2008) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  Google Scholar 

  • Allen KD, Coffman CJ, Golightly YM et al (2010) Comparison of pain measures among patients with osteoarthritis. J Pain 11:522–527

    Article  PubMed  Google Scholar 

  • Bando SY, Alegro MC, Amaro E Jr et al (2011) Hippocampal CA3 transcriptome signature correlates with initial precipitating injury in refractory mesial temporal lobe epilepsy. PLoS One 6(10):e26268

    Article  Google Scholar 

  • Bando SY, Silva FN, Costa Lda F et al (2013) Complex network analysis of CA3 transcriptome reveals pathogenic and compensatory pathways in refractory temporal lobe epilepsy. PLoS One 8(11):e79913

    Article  Google Scholar 

  • Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  Google Scholar 

  • Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network based approach to human disease. Nat Rev Genet 13:56–68

    Article  Google Scholar 

  • Benson M, Breitling R (2006) Network Theory to understand microarray studies of complex diseases. Curr Mol Med 6:695–701

    Article  CAS  PubMed  Google Scholar 

  • Brandes U (2001) A Faster Algorithm for Betweenness Centrality. J Math Sociol 25:163–177

    Article  Google Scholar 

  • Brazma A, Hingcamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat Genet 29:365–371

    Article  CAS  PubMed  Google Scholar 

  • Cai JJ, Borenstein E, Petrov DA (2010) Broker genes in human disease. Genome Biol Evol 2:815–825

    Article  PubMed Central  PubMed  Google Scholar 

  • Carter H, Hofree M, Ideker T (2013) Genotype to phenotype via network analysis. Curr Opin Genet Dev 23:611–621

    Article  CAS  PubMed  Google Scholar 

  • Clauset A, Shallizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51:661–703

    Article  Google Scholar 

  • Chuang H-Y, Hofree M, Ideker Y (2010) A decade of systems biology. Annu Rev Cell Dev Biol 26:721–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costa L da F, Tognetti MAR, Silva FN (2008) Concentric characterization and classification of complex network nodes: application to an institutional collaboration network. Phys A 387:6201–6214

    Article  Google Scholar 

  • Costa L da F, Oliveira ON Jr, Travieso G et al (2011) Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv Phys 60:329–412

    Article  CAS  Google Scholar 

  • Costanzo M, Baryshnikova A, Bellay J et al (2010) The genetic landscape of a cell. Science 327:425–431

    Article  CAS  PubMed  Google Scholar 

  • Cristino AS, Williams SM, Hawi Z, An JY, Bellgrove MA, Schwartz CE, Costa Lda F, Claudianos C (2014) Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry 19:294–301

    Article  CAS  PubMed  Google Scholar 

  • De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6:e1000807

    Article  Google Scholar 

  • Del Rio G, Koschutzki D, Coello G (2009) How to identify essential genes from molecular networks? BMC Syst Biol 3:102

    Article  PubMed Central  PubMed  Google Scholar 

  • Elo LL, Järvenpää H, Oresic M et al (2007) Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics 23:2096–2103

    Article  CAS  PubMed  Google Scholar 

  • Faro A, Giordano D, Spampinato C (2012) Combining literature text mining with microarray data: advances for system biology modeling. Brief Bioinform 13:61–82

    Article  PubMed  Google Scholar 

  • Flake GW, Lawrence SR, Giles CL et al (2002) Self-organization and identification of Web communities. IEEE Computer 35:66–71

    Article  Google Scholar 

  • Freeman LC (1978) Centrality in social networks: conceptual clarification. Soc Netw 1:215–239

    Article  Google Scholar 

  • Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement software. Pract Exp 21:1129–1164

    Article  Google Scholar 

  • Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad Sci U S A 99:7821–7826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herbst A, Jurinovic V, Krebs S et al (2014) Comprehensive analysis of β-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/β-catenin signaling. BMC Genomics 15:74

    Article  PubMed Central  PubMed  Google Scholar 

  • Horvath S, Dong J (2008) Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 4:e1000117

    Article  Google Scholar 

  • Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565

    Article  PubMed Central  PubMed  Google Scholar 

  • Ishiwata RR, Morioka MS, Ogishima S et al (2009) BioCichlid: central dogma-based 3D visualization system of time-course microarray data on a hierarchical biological network. Bioinformatics 25:543–544

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-A, Wuchty S, Przytycka TM (2011) Identifying causal genes and dysregulated pathways in complex diseases. PLoS Comput Biol 7(3):e1001095

    Google Scholar 

  • Langfelder P, Mischel PS, Horvath S (2013) When is hub gene selection better than standard meta-analysis? PLoS ONE 8:e61505

    Article  Google Scholar 

  • Lee WP, Tzou WS (2009) Computational methods for discovering gene networks from expression data. Brief Bioinform 10:408–423

    CAS  PubMed  Google Scholar 

  • Li A, Horwath S (2009) Network module detection: affinity search technique with the multi-node topological overlap measure. BMC Res Notes 2:142

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks. Nature 473(7346):167–173

    Article  CAS  PubMed  Google Scholar 

  • Liu YY, Slotine JJ, Barabási AL (2012) Control centrality and hierarchical structure in complex networks. PLoS ONE 7(9):e44459

    Google Scholar 

  • Mcauley JJ, Costa L da F, Caetano TS (2007) Rich-club phenomenon across complex network hierarchies. Appl Phy Lett 91:084103

    Article  Google Scholar 

  • Masuda N, Konno N (2006) VIP-club phenomenon: emergence of elites and masterminds in social networks. Soc Netw 28:297–309

    Article  Google Scholar 

  • Milo R, Shen-Orr S, Itzkovitz S et al (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827

    Article  CAS  PubMed  Google Scholar 

  • Miron M, Woody OZ, Marcil A et al (2006) A methodology for global validation of microarray experiments. BMC Bioinform 7:333

    Article  Google Scholar 

  • Newman MEJ (2006) Modularity and community structure in networks. PNAS 103:8577–8582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newman MEJ (2010) Networks: an Introduction. Oxford University, New York

    Book  Google Scholar 

  • Pavlopoulos GA, O’Donoghue SI, Satagopam VP et al (2008) Arena3D: visualization of biological networks in 3D. BMC Systems Biology 2:104 (http://www.biomedcentral.com/1752–0509/2/104)

  • Prifti E, Zucker JD, Clement K et al (2008) Funnet: an integrative tool for exploring transcriptional interactions. Bioinformatics 24:2636–2638

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2012) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria (http://www.R-project.org/)

  • Ravasz E, Somera AL, Mongru DA (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    Article  CAS  PubMed  Google Scholar 

  • Rosenkrantz JT, Aarts H, Abee T et al (2013) Non-essential genes form the hubs of genome scale protein function and environmental gene expression networks in Salmonella enterica serovar Typhimurium. BMC Microbiol 13:294

    Article  PubMed Central  PubMed  Google Scholar 

  • Saeed AS, White J et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    CAS  PubMed  Google Scholar 

  • Sahni N, Yi S, Zhong Q et al (2013) Edgotype: a fundamental link between genotype and phenotype. Curr Opin Genet Dev 23:649–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saito R, Smoot ME, Ono K et al (2012) A travel guide to cytoscape plugins. Nat Methods 9:1069–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  PubMed Central  PubMed  Google Scholar 

  • Shen-Orr SS, Milo R, Mangan S et al (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31:64–68

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Perkins RG, Fang H et al (2008) Reproducible and reliable microarray results through quality control: good laboratory proficiency and appropriate data analysis practices are essential. Curr Opin Biotechnol 19:10–18

    Article  CAS  PubMed  Google Scholar 

  • Sieberts SK, Schadt EE (2007) Moving toward a system genetics view of disease. Mamm Genome 18:389–401

    Article  PubMed Central  PubMed  Google Scholar 

  • Silva FN, Rodrigues FA, Oliveira ON Jr et al (2013) Quantifying the interdisciplinarity of scientific journals and fields. J Informetr 7:469–477

    Article  Google Scholar 

  • Song L, Langfelder P, Horvath S (2012) Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform 13:328

    Article  CAS  Google Scholar 

  • Taylor IW, Linding R, Wade-Farley D et al (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotech 27:199–204

    Article  CAS  Google Scholar 

  • True L, Feng Z (2005) Immunohistochemical validation of expression microarray results. J Mol Diagn 7:149–151

    Article  PubMed Central  PubMed  Google Scholar 

  • Tuck DP, Kluger HM, Kluger Y (2006) Characterizing disease states from topological properties of transcriptional regulatory networks. BMC Bioinform 7:236

    Article  Google Scholar 

  • Villa-Vialaneix N, Liaubet L, Laurent T et al (2013) The structure of a gene co-expression network reveals biological functions underlying eQTLs. PLoS One 8:e60045

    Article  Google Scholar 

  • Wang H, Zheng H (2012) Correlation of genetic features with dynamic modularity in the yeast interactome: a view from the structural perspective. IEEE Trans Nanobiosciences 11:244–250

    Article  Google Scholar 

  • Wang Q, Tang B, Song L et al (2013) 3DScapeCS: application of 3 dimensional, parallel, dynamic network visualization in Cytoscape BMC Bioinformatics 14:322 (http://www.biomedcentral.com/1471–2105/14/322)

  • Wang XD, Huang JL, Yang L et al (2014) Identification of human disease genes from interactome network using graphlet interaction. PLoS One 9:e86142

    Google Scholar 

  • Watkinson J, Liang KC, Wang X (2009) Inference of regulatory gene interactions from expression data using three-way mutual information. Ann NY Acad Sci 1158:302–313

    Article  CAS  PubMed  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small word’ networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Weirauch MT (2011) Gene expression network for the analysis of cDNA microarray data. In: Dehmer M, Emmert-Streib F, Graber A, Salvador A (eds) Applied statistics for network biology: methods in systems biology, vol 1. Wiley, Weinheim, pp 215–250

    Chapter  Google Scholar 

  • Weiss JM, Karma A, MacLellan WR et al (2012) “Good enough solutions” and the genetics of complex diseases. Circ Res 111:493–504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winterbach W, Van Mieghem P, Reinders M et al (2013) Topology of molecular interaction networks. BMC Syst Biol 7:90

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu X, Wang W, Zheng WX (2012) Inferring topologies of complex networks with hidden variables. Phys Rev E 86:046106

    Article  Google Scholar 

  • Yu H, Kim PM, Sprecher E et al (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3:e59

    Google Scholar 

  • Yuan Z, Zhao C, Di Z et al (2013) Exact controllability of complex networks. Nat Commun 4:2447

    PubMed Central  PubMed  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4:Article17

    Google Scholar 

  • Zhang J, Ji Y, Zhang L (2007) Extracting three-way gene interactions from microarray data. Bioinformatics 23:2903–2909

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Gerstein M, Snyder M (2007) Getting connected: analysis and principles of biological networks. Genes Dev 21:1010–1024

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Moreira-Filho .

Editor information

Editors and Affiliations

Supporting information (videos)

Supporting information (videos)

Video 4.1. Patients’ group CO network 3D visualization

Hubs, VIPs and high-hubs are indicated in blue, red and green, respectively. Clusters are identified by distinct colors.

Video 4.2. Control group CO network 3D visualization

Hubs, VIPs and high-hubs are indicated in blue, red and green, respectively. Clusters are identified by distinct colors.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moreira-Filho, C., Bando, S., Bertonha, F., Silva, F., Costa, L. (2014). Methods for Gene Coexpression Network Visualization and Analysis. In: Passos, G. (eds) Transcriptomics in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-11985-4_4

Download citation

Publish with us

Policies and ethics