Skip to main content

Artificial Neural Networks Ensemble Applied to the Electrical Impedance Tomography Problem to Determine the Cardiac Ejection Fraction

  • Conference paper
  • First Online:
Advances in Artificial Intelligence -- IBERAMIA 2014 (IBERAMIA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8864))

Included in the following conference series:

Abstract

Cardiac Ejection Fraction (EF) is a parameter that indicates how much blood the heart is pumping to the body. It is a very important clinical parameter since it is highly correlated to the functional status of the heart. To measure the EF, diverse non-invasive techniques have been applied such as Magnetic Resonance. The method studied in this work is the Electrical Impedance Tomography (EIT) which consists in generate an image of the inner body using measures of electrical potentials - some electrodes are attached to the body boundary and small currents are applied in the body, the potentials are then measured in these electrodes. This technique presents lower costs and a high portability compared to others. It can be done in the patient bed and does not use ionizing radiation. The EIT problem consists in define the electrical distribution of the inner parts that results in the potentials measured. Therefore, it is considered as a non-linear inverse problem. To solve that, this work propose the application of an Artificial Neural network (ANN) Ensemble since it is simple to understand and implement. Our results show that the ANN Ensemble presents fast and good results, which are crucial for the continuous monitoring of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Heart Association: Ejection fraction heart failure measurement (2013), http://www.heart.org

  2. Kim, M., Kim, K., Kim, S.: Phase boundary estimation in two-phase flows with electrical impedance tomography. Int. Comm. Heat Transfer 31, 1105–1114 (2004)

    Article  Google Scholar 

  3. Trigo, F., Lima, R., Amato, M.: Electrical impedance tomography using extended kalman filter. I3ETBE 51, 72–81 (2004)

    Google Scholar 

  4. Polydorides, N., Lionheart, W.R.B., McCann, H.: Krylov subspace iterative thechniques: On the brain activity with electrical impedance tomography. I3ETMI 21, 596–603 (2002)

    Google Scholar 

  5. Seo, J., Kwon, O., Ammari, H., Woo, E.: A mathematical model for breast cancer lesion estimation: Electrical impedance technique using ts2000 commercial system. I3ETBE 51, 1898–1906 (2004)

    Google Scholar 

  6. Moura, F.S., Lima, R.G., Aya, J.C.C., Fleury, A.T., Amato, M.B.P.: Dynamic imaging in electrical impedance tomography of the human chest with online transition matrix identification. IEEE Trans. Biomed. Engineering 57, 422–431 (2010)

    Article  Google Scholar 

  7. Isaacson, D., Mueller, J.L., Newell, J.C., Siltanen, S.: Imaging cardiac activity by the d-bar method for electrical impedance tomography. Physiological Measurement 27, S43 (2006)

    Article  Google Scholar 

  8. Peters, F.C., Barra, L.P.S., dos Santos, R.W.: Determination of cardiac ejection fraction by electrical impedance tomography - numerical experiments and viability analysis. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009, Part I. LNCS, vol. 5544, pp. 819–828. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Peters, F.C., Barra, L.P.S., Santos, R.W.: Determination of cardiac ejection fraction by electrical impedance tomography. In: Erondu, O.F. (ed.) Medical Imaging, pp. 253–270. InTech (2011)

    Google Scholar 

  10. Filho, R.G.N.S., Campos, L.C.D., dos Santos, R.W., Barra, L.P.S.: Determination of cardiac ejection fraction by electrical impedance tomography using an artificial neural network. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 130–138. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 993–1001 (1990)

    Article  Google Scholar 

  12. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  13. Gheyas, I.A., Smith, L.S.: A novel neural network ensemble architecture for time series forecasting. Neurocomputing 74, 3855–3864 (2011)

    Article  Google Scholar 

  14. Zhou, Z.H., Jiang, Y., Yang, Y.B., Chen, S.F.: Lung cancer cell identification based on artificial neural network ensembles. Artificial Intelligence in Medicine 24, 25–36 (2002)

    Article  MATH  Google Scholar 

  15. Cunningham, P., Carney, J., Jacob, S.: Stability problems with artificial neural networks and the ensemble solution. Artificial Intelligence in Medicine 20, 217–225 (2000)

    Article  Google Scholar 

  16. Hashem, S.: Optimal linear combinations of neural networks. Neural Networks 10, 599–614 (1997)

    Article  Google Scholar 

  17. Maclin, R., Shavlik, J.W.: Combining the predictions of multiple classifiers: Using competitive learning to initialize neural networks. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp. 524–530. Morgan Kaufmann (1995)

    Google Scholar 

  18. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  19. MATLAB: Neural Network Toolbox. The MathWorks, Inc. (R2009b)

    Google Scholar 

  20. Hagan, M.T., Menhaj, M.: Training feed-forward networks with the marquardt algorithm. IEEE Transactions on Neural Networks 5, 989–993 (1999)

    Article  Google Scholar 

  21. Linares-Rodriguez, A., Ruiz-Arias, J.A., Pozo-Vazquez, D., Tovar-Pescador, J.: An artificial neural network ensemble model for estimating global solar radiation from meteosat satellite images. Energy 61, 636–645 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana C. D. Campos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Filho, R.G.N.S., Campos, L.C.D., dos Santos, R.W., Barra, L.P.S. (2014). Artificial Neural Networks Ensemble Applied to the Electrical Impedance Tomography Problem to Determine the Cardiac Ejection Fraction. In: Bazzan, A., Pichara, K. (eds) Advances in Artificial Intelligence -- IBERAMIA 2014. IBERAMIA 2014. Lecture Notes in Computer Science(), vol 8864. Springer, Cham. https://doi.org/10.1007/978-3-319-12027-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12027-0_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12026-3

  • Online ISBN: 978-3-319-12027-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics