Skip to main content

Queueing Models for Performance Evaluation of Computer Networks—Transient State Analysis

  • Conference paper
  • First Online:
Analytic Methods in Interdisciplinary Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 116))

Abstract

Queueing theory is a useful tool in design of computer networks and their performance evaluation. The literature concerning this subject is abundant. However, it is in general limited to the analysis of steady states. It means that flows of customers considered in models are constant and obtained solutions do not depend on time. It is in glaring contrast with the flows observed in real networks where the perpetual changes of traffic intensities are due to the nature of users, sending variable quantities of data, cf. multimedia traffic, and also due to the performance of traffic control algorithms which are trying to avoid congestion in networks, e.g. the algorithm of congestion window used in TCP protocol which is adapting the rate of the sent traffic to the observed losses or transmission delays. We discuss here the means used to analyse transient states in queueing models. In computer applications a mathematical model is useful only when it furnishes quantitative results. Therefore practical issues related to numerical side of models are of importance and are here discussed. We present three approaches—Markov models solved numerically, fluid flow approximation and diffusion approximation. A particular importance is given to the latter as the author has here over 20 year experience in development and application of this method. He is also convinced of the qualities of this approach—its flexibility to treat various variants of queueing models. Traffic intensity observed in computer networks have a complex stochastic nature that influences the network performances. We discuss also this side of implemented queueing models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.K. Erlang, The theory of probabilities and telephone conversations. Nyt Tidsskr. Mat. B 20, 33–39 (1909)

    MATH  Google Scholar 

  2. A.K. Erlang, Solutions of some problems in the theory of probabilities of significance in automatic telephone exchnges. Electroteknikeren 13, 5–13 (1917)

    Google Scholar 

  3. T.O. Engset, Die Wahrscheinlichkeitsrechnung zur Bestimmung der Whlerzahl in automatischen Fernsprechmtern, Elektrotechnische Zeitschrift, Heft 31 (1918)

    Google Scholar 

  4. D.G. Kendall, Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain. Ann. Math. Stat. 24(3), 338 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Kleinrock, Queueing Systems, volume I: Theory, volume II: Computer Applications (Wiley, New York, 1975/1976)

    Google Scholar 

  6. M. Stasiak, M. Gabowski, A. Wisniewski, P. Zwierzykowski, Modelling and Dimensioning of Mobile Networks, from GSM to LTE, (Wiley, 2011)

    Google Scholar 

  7. A.L. Sherr, An analysis of time-shared computer system, Ph.D. Thesis, Project MAC, MIT Press, Cambridge, 1967

    Google Scholar 

  8. A.Y. Khinchin, On the average stopping time of machines (in Russian). Mat. Sb. 40, 119–123 (1933)

    MATH  Google Scholar 

  9. E.D. Lazowska, J. Zahorjan, G.S. Graham, K.C. Sevcik, Computer System Analysis Using Queueing Network Models (Prentice-Hall Inc, New Jersey, 1984)

    Google Scholar 

  10. H. Kobayashi, Modeling and Analysis: An Introduction to System Performance Evalution Methodology, Quantitative System Performance (Addison Wesley, Reading, 1978.)

    Google Scholar 

  11. E. Gelenbe, I. Mitrani Analysis and synthesis of computer systems (Academic Press, London, 1980)

    Google Scholar 

  12. W. Willinger, W.E. Leland, M.S. Taqqu, On the self-similar nature of ethernet traffic. IEEE/ACM Trans. Netw. 2, 1–15 (1994)

    Article  Google Scholar 

  13. E. Gelenbe, On approximate computer systems models. J. ACM 22(2), 261–269 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Czachórski, A method to solve diffusion equation with instantaneous return processes acting as boundary conditions. Bulletin of Polish Academy of Sciences. Tech. Sci. 41(4), 417–451 (1993)

    Google Scholar 

  15. F. Baskett, M. Chandy, R. Muntz, J. Palacios, Open, closed and mixed networks of queues with different classes of customers. J. ACM 22(2), 248–260 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Reinecke, T. Krauß, K. Wolter, Hyperstar: phase-type fitting made easy. in 9th International Conference on the Quantitative Evaluation of Systems (QEST) 2012. 201202 Tool Presentation (September 2012)

    Google Scholar 

  17. D.C. Champernowne, An elementary method of solution of the queueing problem with a single server and constant parameters. J. R. Stat. Soc. B18, 125–128 (1956)

    MathSciNet  Google Scholar 

  18. L. Takâcs, Introduction to the Theory of Queues (Oxford University Press, Oxford, 1960)

    Google Scholar 

  19. A.M.K. Tarabia, Transient analysis of M/M/1/N queue—an alternative approach. Tamkang J. Sci. Eng. 3(4), 263–266 (2000)

    Google Scholar 

  20. T.C.T. Kotiah, Approximate transient analysis of some queueing systems. Oper. Res. 26(2), 334–346 (1978)

    MathSciNet  Google Scholar 

  21. S.K. Jones, R.K. Cavin, D.A. Johnston, An efficient computational procedure for the evaluation of the \(M/M/1\) transient state occupancy probabilities. IEEE Trans. Commun. COM–28(12), 2019–2020 (1980)

    Article  Google Scholar 

  22. B. Mandelbrot, J.V. Ness, Fractional brownian motions, fractional noises and applications. SIAM Review, vol. 10 (1968)

    Google Scholar 

  23. D.R. Cox, Long-Range Dependance: A Review, Statistics: An Appraisal (Lowa State University Press, Lowa, 1984)

    Google Scholar 

  24. I. Norros, On the use of fractional Brownian motion in the theory of connectionless networks. IEEE J. Sel. Areas Commun. 13(6), 953–962 (1995)

    Article  Google Scholar 

  25. T. Mikosch, S. Resnick, H. Rootzen, A. Stegeman, Is network traffic approximated by stable levy motion or fractional Brownian motion? Anal. Appl. Probab. 12(1), 23–68 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Erramilli, R.P. Singh, P. Pruthi, An application of determinic chaotic maps to model packet traffic. Queueing Syst. 20(1–2), 171–206 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. J.R. Gallardo, D. Makrakis, L. Orozco-Barbosa, Use a \(\alpha \)-stable self-similar stochastic processes for modeling traffic in broadband networks. Perform. Eval. 40(1–3), 71–98 (2000)

    Article  MATH  Google Scholar 

  28. F. Harmantzis, D. Hatzinakos, Heavy network traffic modeling and simulation using stable FARIMA processes. in 19th International Teletraffic Congress (Beijing, 2005)

    Google Scholar 

  29. N. Laskin, I. Lambadatis, F.C. Harmantzis, M. Devetsikiotis, Fractional levy motion and its application to network traffic modeling. Comput. Netw. 40(3), 363–375 (2002)

    Article  Google Scholar 

  30. G. Casale, Building accurate workload models using Markovian arrival processes, SIGMETRICS’11, (San Jose, U.S.A., 2011), pp. 7–11

    Google Scholar 

  31. A.T. Andersen, B.F. Nielsen, A markovian approach for modeling packet traffic with long-range dependence. IEEE J. Sel. Areas Commun. 16(5), 719–732 (1998)

    Article  Google Scholar 

  32. W. Fischer, K. Meier-Hellstern, The Markov-modulated Poisson process (MMPP) cookbook. Perform. Eval. 18(2), 149–171 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Domanska, A. Domanski, T. Czachorski, Internet Traffic Source Based on Hidden Markov Model, NEW2AN 2011 (St. Petersburg, Russia, 2011)

    Google Scholar 

  34. D. Potier, New user’s introduction to QNAP2, Rapport Technique no. 40, INRIA, Rocquencourt (1984)

    Google Scholar 

  35. W. Stewart, Introduction to the Numerical Solution of Markov Chains (Princeton University Press, Chichester, 1994)

    MATH  Google Scholar 

  36. PEPS, www-id.imag.fr/Logiciels/peps/userguide.html

  37. PRISM—probabilistic model checker, www.prismmodelchecker.org/

  38. C. Moler, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 30–49 (2003)

    Article  MathSciNet  Google Scholar 

  39. P. Pecka, S. Deorowicz, M. Nowak, Efficient representation of transition matrix in the markov process modeling of computer networks, in Man-Machine Interactions 2, Advances in Intelligent and Soft Computing no. 103, ed. by T. Czachórski, et al. (Springer, 2011), pp. 457–464

    Google Scholar 

  40. C. Scientifique, B. Philippe, R.B. Sidje, Transient solutions of Markov processes by krylov subspaces. 2nd International Workshop on the Numerical Solution of Markov Chains (1989)

    Google Scholar 

  41. R.B. Sidje, K. Burrage, S. McNamara, Inexact uniformization method for computing transient distributions of Markov chains. SIAM J. Sci. Comput. 29(6), 2562–2580 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. R.B. Sidje, W.J. Stewart, A numerical study of large sparse matrix exponentials arising in Markov chains. Comput. Stat. Data Anal. 29, 345–368 (1999)

    Article  MATH  Google Scholar 

  43. R.B. Sidje, Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1), 130–156 (1998)

    Article  MATH  Google Scholar 

  44. Numerical computation for Markov chains on GPU: building chains and bounds, algorithms and applications. Project POLONIUM 2012–2013, bilateral cooperation PRISM-Université de Versailles and IITiS PAN, Polish Academy of Sciences

    Google Scholar 

  45. E. Gelenbe, G. Pujolle, The behaviour of a single queue in a general queueing network. Acta Inform. 7(Fasc. 2), 123–136 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  46. R.P. Cox, H.D. Miller, The Theory of Stochastic Processes (Chapman and Hall, London, 1965)

    MATH  Google Scholar 

  47. H. Stehfest, Algorithm 368: numeric inversion of laplace transform. Commun. ACM 13(1), 47–49 (1970)

    Article  Google Scholar 

  48. P.J. Burke, The output of a queueing system. Oper. Res. 4(6), 699–704 (1956)

    Article  MathSciNet  Google Scholar 

  49. T. Czachorski, J.-M. Fourneau, T. Nycz, F. Pekergin, Diffusion approximation model of multiserver stations with losses. Electron. Notes Theor. Comput. Sci. 232, 125–143 (2009)

    Article  Google Scholar 

  50. T. Czachrski, K. Grochla, T. Nycz, F. Pekergin, Diffusion approximation models for transient states and their application to priority queues. IARIA J. Int. J. Adv. Netw. Serv. 2(3), 205–217 (2009)

    Google Scholar 

  51. K. Hollot, Y. Liu, V. Misra, D. Towsley, W.B. Gong, Fluid methods for modeling large heterogeneous networks. Technical report AFRL-IF-RS-TR-2005-282 (2005)

    Google Scholar 

  52. Y. Liu, F. Lo Presti, V. Misra, Y. Gu, Fluid Models and Solutions for Large-Scale IP Networks, ACM/SigMetrics (2003)

    Google Scholar 

  53. V. Misra, W. Gong, D. Towsley, A fluid-based Analysis of a network of AQM routers supporting TCP flows with an application to RED. in Proceedings of the Conference on Applications, Technologies, Architectures and Protocols for Computer Communication (SIGCOMM 2000), pp. 151–160 (2000)

    Google Scholar 

  54. A. Domański, J. Domańska, T. Czachórski, Comparison of CHOKe and gCHOKe Active Queues Management Algorithms with the use of Fluid Flow Approximation, Communications in Computer and Information Science, vol 370 (Springer, Berlin, 2013)

    Google Scholar 

  55. A. Domański, J. Domańska, T. Czachórski, Comparison of AQM Control Systems with the Use of Fluid Flow Approximation, Communications in Computer and Information Science, vol 291 (Springer, Heidelberg, 2012)

    Google Scholar 

  56. J. Domańska, A. Domański, T. Czachórski, Fluid Flow Analysis of RED Algorithm with Modified Weighted Moving Average, Communications in Computer and Information Science, vol 356 (Springer, Berlin, 2013)

    Google Scholar 

  57. T. Czachórski, M. Nycz, T. Nycz, F. Pekergin, Analytical and numerical means to model transient states in computer networks’, in 20th International Conference, CN 2013, (Lwowek Slaski, Poland, June 17–21, 2013). Springer Proceedings Series: Communications in Computer and Information Science, Vol. 370, pp. 426–435, ISBN: 978-3-642-38864-4

    Google Scholar 

  58. T. Nycz, M. Nycz, T. Czachórski, A numerical comparison of diffusion and fluid-flow approximations used in modelling transient states of TCP/IP networks, in Proceedings of Computer Networks, ed. by A. Kwiecie, P. Gaj, P. Stera (Springer, Berlin, 2014)

    Google Scholar 

  59. OMNET++ Community Site, www.omnetpp.org

Download references

Acknowledgments

This work was supported by Polish project NCN nr 4796/B/T02/2011/40 “Models for transmissions dynamics, congestion control and quality of service in Internet”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Czachórski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Czachórski, T. (2015). Queueing Models for Performance Evaluation of Computer Networks—Transient State Analysis. In: Mityushev, V., Ruzhansky, M. (eds) Analytic Methods in Interdisciplinary Applications. Springer Proceedings in Mathematics & Statistics, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-319-12148-2_4

Download citation

Publish with us

Policies and ethics